
COVER FE ATURE

25OCTOBER 2011Published by the IEEE Computer Society0018-9162/11/$26.00 © 2011 IEEE

OSS AS A SILVER BULLET
Twenty-five years ago, IBM software engineer Fred

Brooks famously contended that “there is no single devel-
opment, in either technology or management technique,
which by itself promises even one order of magnitude
improvement within a decade in productivity, in reliability,
in simplicity.”1 However, many claim that OSS is indeed
such a silver bullet.

Defenders argue that OSS, beyond its obvious cost
advantages, is of very high quality. Contributors to OSS
projects are in the top 5 percent of developers worldwide
in terms of ability, and are self-selected and thus highly
motivated. Furthermore, the testing pool is global, and peer
review is truly independent.

Another key advantage cited is the rapid development
time of projects. The OSS community has taken odds with
Brooks’ law—namely, that “adding manpower to a late
software product makes it later,”2 a conclusion based on his
experience managing development of the IBM OS/360—by
endorsing Linus’s law: “Given enough eyeballs, every bug
is shallow.”3

There are many examples of OSS products of excep-
tional quality and reliability across a range of application
domains—indeed, “category killers” such as the Linux
kernel and Apache webserver perform so well that there
is no market for an alternative.

O pen source software can elicit strongly con-
trasting reactions. Advocates claim that OSS
is high-quality software produced on a rapid
time scale and for free or at very low cost by

extremely talented developers. At the same time, critics
characterize OSS as variable-quality software that has
little or no documentation, is unpredictable as to stability
or reliability, and rests on an uncertain legal founda-
tion—the result of a chaotic development process that is
completely alien to software engineering’s fundamental
tenets and conventional wisdom.

Research suggests a more balanced view. On one hand,
OSS is not the “silver bullet” championed by its most vocal
partisans. On the other hand, it does not radically diverge
from traditional software engineering practice as its sever-
est detractors claim, and, as evidenced by some notable
successes, OSS offers many tangible benefits.

Despite initial suggestions to the contrary,
open source software projects exhibit
many of the fundamental tenets of soft-
ware engineering. Likewise, the existence
of category-killer apps suggests that con-
ventional software engineering can draw
some lessons from OSS.

Brian Fitzgerald, Lero—the Irish Software Engineering Research Centre

Open Source
Software:
Lessons
from and for
Software
Engineering

Sound software engineering principles
such as a modular architecture
and sophisticated configuration
management are very much at the
heart of successful OSS projects.

COVER FE ATURE

COMPUTER 26

NOT SO FAST
Critics concede that a staggering mélange of OSS prod-

ucts is readily available for free download, but they claim
it is virtually impossible to predict the usability, stability,
and reliability of these products. The uneven quality is
not helped by a lack of documentation and the reliance
on support and upgrades from a voluntary community
who must be convinced to accept changes to suit specific
circumstances. These flaws are exacerbated by a complex
licensing situation in which even the lawyers cannot de-
finitively resolve IP rights issues.4

Furthermore, OSS arises from a development process
that seems to flout traditional best practices. For example,
typically there is no real formal design process, no risk
assessment or measurable goals, often no direct mon-
etary incentives for developers or organizations, informal
coordination and control, and much redundancy as tasks
are duplicated in parallel initiatives. All of this is anathema
to conventional software engineering.

Other analyses of OSS say that 30 years of prior soft-
ware engineering research cannot be discounted so easily.
The claims in relation to the quality of OSS products and of
community feedback are particularly questionable when
exposed to scrutiny.

Quality
A study by Ioannis Stamelos and colleagues assessed

quality issues in the SuSE Linux 6.0 release.5 Using the
Logiscope code analysis tool, they examined more than
600,000 lines of code across 100 modules and found
that only 50 percent were acceptable. Of the remainder,
31 percent required comments, 9 percent required fur-
ther inspection, 4 percent required further testing, and
6 percent needed to be completely rewritten. These results
are quite average in the software industry: only half of all
modules meet generally accepted standards.

In a similar vein, Srdjan Rusovan, Mark Lawford, and
David Parnas studied the implementation of the Address
Resolution Protocol in the Linux TCP/IP implementation
and identified numerous software quality problems.6

Community feedback
The claim of high-quality feedback from the OSS com-

munity is also questionable. A study of OSS development

by Niels Jørgensen revealed that while simpler code gets
more feedback, it is generally not all that useful.7 A sort of
inverse Pareto principle is likely at work, in that 99 percent
of OSS developers spot 80 percent of the bugs, but only
about 1 percent of the developers can identify the more
difficult 20 percent. Furthermore, the Jørgensen study
showed that there was very little feedback on design issues,
a significant deficiency.

Also, the fact that OSS is the choice of the techno-
logically literate could be problematic. On his OS/2
Headquarters website, Tom Nadeau argued that propri-
etary software vendors always gear their software to “the
most ignorant customers,” while OSS developers cater to
the “smartest customers” and can thus cut back on niceties
such as a user-friendly interface.8 This phenomenon
appears to be somewhat borne out by the comments
of one Linux user who, after installing the OS, posted
a message referring to the “thrilling adventure” of the
installation.

LESSONS FROM SOFTWARE ENGINEERING
In light of these critiques of OSS, it is worth consider-

ing the lessons and principles that OSS has drawn from
software engineering. It is readily apparent that sound
software engineering principles such as a modular archi-
tecture and sophisticated configuration management are
very much at the heart of successful OSS projects.

Linux offers one demonstration of the importance of
modularity in OSS. Linux benefited greatly from the elimi-
nation of defects and fleshing out of requirements in Unix.9
Indeed, the manner in which different individuals take
responsibility for various self-contained modules within
Linux is acknowledged as a major factor in its successful
evolution.

The Sendmail utility offers additional evidence of the
role of modularity in OSS. Sendmail was first developed
in the late 1970s at the University of California, Berkeley,
by Eric Allman, who made the source code available to all
interested parties. However, when problems in integrat-
ing these efforts emerged as the utility began to evolve
through others’ contributions, Allman rewrote Sendmail
to follow a more modular structure. This ensured that the
program would be a suitable candidate for massive parallel
development, a characteristic of OSS, as developers could
largely work independently on different aspects. Sendmail
is now the dominant internetwork e-mail router, handling
an estimated 80 percent of all Internet e-mail.10

The modular approach applies to project structure as
well as the code base: large OSS projects tend to be aggre-
gations of smaller projects.11 This allows developing, fixing,
and releasing components more independently.

Configuration management is likewise a vitally impor-
tant factor in OSS, and several sophisticated tools exist
for this purpose. In addition, the software engineering

OSS can contribute much to software
engineering knowledge, including
open innovation, global software
development, inner source, and
time-based release management.

27OCTOBER 2011

principles of independent peer review and testing are highly
evolved within OSS.

In short, the code in OSS products is often very struc-
tured and modular, and developers carefully vet and
incorporate contributions in a disciplined fashion in
accordance with good configuration management and
independent peer review and testing. OSS development
does not depart significantly from many sensible and
proven software engineering principles, and it is simplis-
tic to characterize OSS as a “bazaar” with an undisciplined
development process.

LESSONS FOR SOFTWARE ENGINEERING
Despite overblown hype at times, there are undoubted

and notable OSS successes. OSS can contribute much to
software engineering knowledge, including open inno-
vation, global software development, inner source, and
time-based release management.

Open innovation
Open innovation has become a holy grail in organi-

zational endeavors, including software development.
Recognizing that no single organization will have a monop-
oly on creative people, open innovation seeks to leverage
ideas from a wider, ideally global, talent pool.

Certain characteristics are important stimulants to in-
novation, including

 • autonomy, which forms the basis for self-organizing
and increases the possibility that individuals will
motivate themselves to form new knowledge;

 • creative chaos, whereby individuals do not have to
follow organizational rules but are challenged to
investigate alternatives and rethink assumptions;

 • information redundancy, whereby individuals have
information that goes beyond their immediate needs
for a particular task; and

 • requisite variety, whereby individuals have the diverse
skills needed to match the complexity and variability
of the environment they face.12

All these characteristics are readily found in OSS com-
munities. Developers tend to self-select and are largely
autonomous in relation to the tasks they undertake.
Given that most OSS developers work outside organiza-
tional boundaries, creative chaos can exist. The openness
of the code at mature points in the development process
facilitates information redundancy. And the cosmopolitan
nature of OSS developer communities ensures requisite
variety.

Much of OSS obeys a power law.13 An interesting prop-
erty of power-law distributions is that they do not have
a peak at the average—hence they scale. This is evident
in typical OSS projects. For example, while some might

suggest that Firefox has too many developers,14 several
hundred thousand people use test versions of the browser,
and about 20 percent take the time to contribute bug
reports. This pool of users is an extremely useful resource.

OSS has also been a source of inspiration in terms of
innovative business models. One model is to offer a free
open source version of a proprietary product that entices
customers to purchase the enterprise version with some
additional functionality.15 Also, innovations and new fea-
tures emerge from the OSS community’s creative mindset.

As Eric Raymond memorably observed, most OSS
developers have “a personal scratch to itch.”3 It is thus
no accident that many successful OSS products are gen-
eral purpose. Given Jørgensen’s finding that feedback on
design issues in OSS development is rare,7 it appears that
OSS is best suited to horizontal domains in which there
is widespread agreement on the design architecture and
the general composition of the software requirements is

fairly well known and unproblematic. This is probably
essential with a large base of contributors from a wide
variety of industrial and academic backgrounds. On the
other hand, in vertical domains where requirements and
design issues are a function of specific domain knowledge
that can only be acquired over time—the case with many
business environments—there are not likely to be as many
OSS offerings.

Given OSS’s potential for innovation, it is ironic that
many early efforts replicated proprietary software prod-
ucts. However, unique features originated in these OSS
clones that were typically ported back into their propri-
etary counterparts.

Global software development
GSD dramatically increases coordination, communica-

tion, and control challenges in software development.16
Given the current trends of outsourcing and globalization,
GSD is an issue of increasing significance for organiza-
tions today.

OSS resolves coordination issues in GSD with simple
communication tools—e-mail, newsgroups, and version
control systems.17 The “secret sauce” seems to lie in the
coordination structures present in OSS. At the center is
a team of experts with varied experience who tend to
coordinate their work informally but are aware of one

Several OSS projects have radically
changed their release management
processes and moved to a time-based
strategy.

COVER FE ATURE

COMPUTER 28

another’s expertise. This relatively small core group does
the vast majority of coding, but it is complemented by
larger teams of bug-fixers and testers drawn from the
user population. The latter boost productivity and reduce
defect density but do not add interdependencies, as finding
and reporting bugs does not involve code changes. Conse-
quently, several studies have reported efforts to transfer
OSS lessons to GSD within organizations.17,18

Inner source
The phenomenon of adopting OSS practices within a

corporate setting is known as inner source,19 also called
corporate open source20 and progressive open source.21
While there is no standard set of OSS practices, some
common ones include open sharing of source code,
large-scale independent peer review, the community
development model, and the expanded role of users.22
Leveraging a product’s users as codevelopers can improve

quality and generate specialized new features that are
important to a wider audience.23 Although OSS practices
are generally more applicable to large organizations due
to their inherent geographic distribution, smaller organiza-
tions can also benefit from OSS development practices.24

Companies usually employ inner source to capitalize on
the success of certain open source projects. However, there
are important differences between open source and closed
source development and their respective communities.25

In traditional software development, developers and
user testers are typically in separate departments or loca-
tions. This can lead to employees being unaware of other
projects and innovations, all too frequently resulting in a
lack of mutual respect or voluntary interaction.

While early open source developers were users of actual
products, as OSS has evolved, the situation has changed.
In the absence of a traditional software development com-
pany, users need to become more intimately involved in
the development process, as technical staff cannot simply
send a checklist of requirements to the vendor. It is a
widely held belief that deploying open source can lead to
a sense of shared adventure, which is not a common sce-
nario in the proprietary software arena. Also, it has been
reported that OSS developers take greater pride in their
work and feel a greater sense of responsibility to deliver
high-quality code because peers they truly respect will
review their efforts.26

Time-based release management
Release management has been the subject of little re-

search in the software engineering field. Traditional models
focused on the initial release of a software product and
ignored subsequent releases,27 but the industry now recog-
nizes that a continuous-release strategy delivers both fixes
and new functionality to users. This strategy also staves off
obsolescence by maintaining the software’s value.

The norm is to release a new version of software when
it meets a specific set of criteria and has attained cer-
tain goals, usually features important to customers. In
commercial software release management, this strategy
requires delicate balancing as introducing a new release
too early could erode the market share and revenue-
generating potential of the existing one.28

To mitigate risk from some OSS practices such as the
lack of deadlines, the reliance on volunteers, and ad hoc
coordination and management, numerous OSS projects
appear to have formalized their release management
process.29 This is an important part of quality assurance
because developers stop adding new features during the
preparation for a release and instead focus on identifying
and removing defects. The feedback obtained after a re-
lease also provides information about which parts of the
software might need more attention.

In the case of OSS, however, it is not obvious how a
team of loosely connected, globally distributed volun-
teers can work together to release high-quality software,
some of which consists of millions of lines of code writ-
ten by thousands of people, in a timely fashion. There is
much evidence that this is a serious problem. For example,
the Debian OS has increasingly experienced delays and
unpredictability, with up to three years between stable
releases. However, this pales compared to the compres-
sion utility gzip, with 13 years between stable releases
(1993-2006).

Consequently, several OSS projects have radically
changed their release management processes and moved
to a time-based strategy. This approach sets a specific
release date well in advance and creates a schedule so
contributors can plan accordingly. Prior to the release,
there is a cutoff date on which developers evaluate all fea-
tures for stability and maturity and then decide whether
to include them in the upcoming release or postpone them
to the next one.

While the specific time-based approach differs from
project to project, there is a common pattern of staged
progress toward a release in which each stage is associated
with increasing control over permitted changes. These
control mechanisms are known as freezes because devel-
opment is slowly halted. Freeze categories include

 • feature freeze: no new functionality can be added—
the focus is on removing defects;

29OCTOBER 2011

 • string freeze: no messages displayed by the program,
such as error messages, can be changed—this allows
translating as many messages as possible before the
release; and

 • code freeze: permission is required to make any
change, even to fix bugs.29

In modular component releases, developers can fix
and release defective modules while using a time-based
strategy to combine components and test the integrated
product, as is the case with Debian and GNOME (GNU
Object Model Environment).29

The trend toward software as a service suggests that a
release management strategy focused on big-bang features
is not suitable, as customers prefer to obtain continuous
improvements from a vendor website rather than buy
a new shrink-wrapped product. A time-based release
management strategy is ideal for regularly adding new
functionality.

O pen source software promises to be part of the
software landscape for some time to come.30 While
the notion of OSS as a silver bullet might be an inac-

curate stereotype, OSS projects clearly exhibit many of
the fundamental tenets of software engineering. Like-
wise, the fact that OSS provides some category killer apps
developed in a GSD context—recognized to be a complex
development environment—suggests that conventional
software engineering can draw lessons from OSS.

Acknowledgments
Thanks to Klaas-Jan Stol for providing useful feedback in the
development of this article. Support for this work came from
Science Foundation Ireland through its grant to Lero—the
Irish Software Engineering Research Centre.

References
 1. F.P. Brooks, “No Silver Bullet—Essence and Accident in

Software Engineering,” Proc. IFIP 10th World Computing
Conf., Elsevier Science, 1986, pp. 1069-1076.

 2. F.P. Brooks, The Mythical Man-Month: Essays on Software
Engineering, Addison-Wesley, 1975.

 3. E.S. Raymond, The Cathedral & the Bazaar: Musings on
Linux and Open Source by an Accidental Revolutionary,
O’Reilly Media, 1999.

 4. K.-J. Stol and M.A. Babar, “Challenges in Using Open
Source Software in Product Development: A Review of
the Literature,” Proc. 3rd Int’l Workshop Emerging Trends
in Free/Libre/Open Source Software Research and Develop-
ment (FLOSS 10), ACM Press, 2010, pp. 17-22.

 5. I. Stamelos et al., “Code Quality Analysis in Open Source
Software Development,” Information Systems J., Jan. 2002,
pp. 43-60.

 6. S. Rusovan, M. Lawford, and D. Parnas, “Open Source
Software Development: Future or Fad?,” Perspectives on

Free and Open Source Software, J. Feller et al., eds., MIT
Press, 2005, pp. 107-121.

 7. N. Jørgensen, “Putting It All in the Trunk: Incremental Soft-
ware Development in the FreeBSD Open Source Project,”
Information Systems J., Oct. 2001, pp. 321-336.

 8. T. Nadeau, “Learning from Linux: OS/2 and the Hallow-
een Memos,” OS/2 Headquarters, 1999; www.os2hq.com/
archives/linmemo1.htm.

 9. S. McConnell, “Open-Source Methodology: Ready for
Prime Time?,” IEEE Software, July/Aug. 1999, pp. 6-11.

 10. B. Costales et al., Sendmail, 4th ed., O’Reilly Media, 2007.
 11. K. Crowston and J. Howison, “The Social Structure of Free

and Open Source Software Development,” First Monday,
Feb. 2005; http://firstmonday.org/htbin/cgiwrap/bin/ojs/
index.php/fm/article/view/1478/1393.

 12. I. Nonaka, “A Dynamic Theory of Organizational Knowl-
edge Creation,” Organization Science, Feb. 1994, pp. 14-37.

 13. G. Madey, V. Freeh, and R. Tynan, “The Open Source Soft-
ware Development Phenomenon: An Analysis Based on
Social Network Theory,” Proc. 8th Americas Conf. Informa-
tion Systems (AMCIS 02), Assoc. for Information Systems,
2002, pp. 1806-1813.

 14. G. Hayes, “Firefox Has Too Many Developers,” blog, 14 Dec.
2009; www.trollaxor.com/2009/12/firefox-has-too-many-
developers.html.

 15. P.J. Agerfalk and B. Fitzgerald, “Outsourcing to an Un-
known Workforce: Exploring Opensourcing as a Global
Sourcing Strategy,” MIS Q., June 2008, pp. 385-410.

 16. P.J. Agerfalk and B. Fitzgerald, “Flexible and Distributed
Software Processes: Old Petunias in New Bowls?,” Comm.
ACM, Oct. 2006, pp. 26-34.

 17. A. Mockus and J.D. Herbsleb, “Why Not Improve Coordi-
nation in Distributed Software Development by Stealing
Good Ideas from Open Source?,” Proc. 2nd ICSE Workshop
Open Source Software Eng. (ICSE 02), ACM Press, 2002, pp.
35-37.

 18. J.R. Erenkrantz and R.N. Taylor, “Supporting Distributed
and Decentralized Projects: Drawing Lessons from the
Open Source Community,” Proc. 1st Workshop Open
Source in an Industrial Context (OSIC 03), ACM Press, 2003;
http://flosshub.org/system/files/erenkrantz2003.pdf.

 19. J. Wesselius, “The Bazaar inside the Cathedral: Business
Models for Internal Markets,” IEEE Software, May/June
2008, pp. 60-66.

 20. V.K. Gurbani, G. Anita, and J.D. Herbsleb, “A Case Study
of a Corporate Open Source Development Model,” Proc.
28th Int’l Conf. Software Eng. (ICSE 06), ACM Press, 2006,
pp. 472-481.

 21. J. Dinkelacker et al., “Progressive Open Source,” Proc. 24th
Int’l Conf. Software Eng. (ICSE 02), ACM Press, 2002, pp.
177-184.

 22. K.-J. Stol et al., “A Comparative Study of Challenges in
Integrating Open Source Software and Inner Source Soft-
ware,” to appear in Information and Software Technology,
2011, doi:10.1016/j.infsof.2011.06.007.

 23. T. O’Reilly, “Lessons from Open Source Software Develop-
ment,” Comm. ACM, Apr. 1999, pp. 33-37.

 24. K. Martin and B. Hoffman, “An Open Source Approach
to Developing Software in a Small Organization,” IEEE
Software, Jan./Feb. 2007, pp. 46-53.

COVER FE ATURE

COMPUTER 30

 Selected CS articles and columns are available
 for free at http://ComputingNow.computer.org.

 25. W. Scacchi et al., “Understanding Free/Open Source
Software Development Processes,” Software Process: Im-
provement and Practice, Mar./Apr. 2006, pp. 95-105.

 26. C. Melian, “Progressive Open Source: The Construction of
a Development Project at Hewlett-Packard,” PhD disserta-
tion, Stockholm School of Economics, 2007.

 27. K.D. Levin and O. Yadid, “Optimal Release Time of Im-
proved Versions of Software Packages,” Information and
Software Technology, Jan./Feb. 1990, pp. 65-70.

 28. M.S. Krishnan, “Software Release Management: A Busi-
ness Perspective,” Proc. 1994 Conf. Centre for Advanced
Studies on Collaborative Research (CASCON 94), IBM Press,
1994, pp. 36-43.

 29. B. Fitzgerald and M. Michlmayr, Time-Based Release Man-
agement in Free/Open Source (FOSS) Projects, tech. report
TR-2011-04, Lero—the Irish Software Eng. Research
Centre, Univ. of Limerick, 2011; http://lero.ie/sites/default/
files/Lero-TR-2011-04.pdf.

 30. B. Fitzgerald, “The Transformation of Open Source Soft-
ware,” MIS Q., Sept. 2006, pp. 587-598.

Brian Fitzgerald is a principal investigator at Lero—the
Irish Software Engineering Research Centre and founding
director of the Lero Graduate School in Software Engineer-
ing at the University of Limerick, Ireland, where he also
holds the Frederick A. Krehbiel Chair II in Innovation in
Global Business and Technology and is vice president of
research. His research focuses on software development,
encompassing development methods, global software
development, agile methods, and open source software.
Fitzgerald received a PhD in computer science from the
University of London. He is a fellow of the Irish Computer
Society and the British Computer Society. Contact him at
bf@ul.ie.

cybersecurity 800-888-UMUC • umuc.edu/cyberwarrior

Enroll now.

On this battlefield,
EdUCation is yoUr bEst dEfEnsE.
Cyber attacks are being waged all over the world,
creating an unprecedented demand for trained
professionals to protect our country’s data assets and
develop cybersecurity policies. Help meet the demand
with a bachelor’s or master’s degree in cybersecurity.
Whether you plan to work for Cyber Command taking
down cyber terrorists or for private industry battling
hackers, UMUC can help you make it possible.

• designated as a national Center of academic
Excellence in information assurance Education
by the nsa and dHs

• bs and Ms in cybersecurity and Ms in
cybersecurity policy available

• Programs offered entirely online

• interest-free monthly payment plan available,
plus financial aid for those who qualify

Copyright © 2011 University of Maryland University College

UMUC13329 Cyber 7x4.75 IEEE Computer.indd 1 8/24/11 10:52 AM

