
64 April 2003/Vol. 46, No. 4 COMMUNICATIONS OF THE ACM

G
iven the pervasive nature of software in mod-
ern society, the development of software is a
critical issue, but one that remains problem-
atic. The term “software crisis” was first coined
more than 30 years ago, and may be simply
summarized as software taking too long to

develop, costing too much, and not working very well when
eventually delivered. A disciplined approach to software devel-
opment through the use of software development methods could
help address these problems. Hundreds of such commercial or
brand-named software development methods exist, but these are
not widely used in practice, and are certainly not used in their
entirety [5]. Even when methods are used, the problem of
means-end inversion often arises; that is, rather than focusing on
the end (the development of software), developers become pre-
occupied with the means (the software development method)
and lapse into blind adherence to low-level method steps rather
than focusing on higher-level principles that make sense in the
development context [5].

By
Brian Fitzgerald,
Nancy L. Russo,
and Tom O’Kane

COMMUNICATIONS OF THE ACM April 2003/Vol. 46, No. 4 65

Perfection is achieved not when there is nothing more to be added
but when there is nothing left to take away.

—Antoine de Saint-Exupery

SOFTWARE
DEVELOPMENT

METHOD TAILORING
AT MOTOROLA

I L L U S T R AT I O N B Y K A R I N E D A I S A Y

66 April 2003/Vol. 46, No. 4 COMMUNICATIONS OF THE ACM

In recognition of this, it is now widely accepted
that methods should be tailored to the actual needs of
the development context. However, there is very little
by way of practical guidance to inform developers as
to what steps of the method to modify or omit.
Indeed, there is often a wide disparity between the
official development process and the actual behavior
of developers in practice [5]. To investigate this fur-
ther, we conducted a detailed examination of the tai-
loring of the software development method at the
Motorola software development facility in Cork, Ire-
land. From this case study of a high profile, successful
software development organization, we draw lessons
on tailoring that should be applicable to organizations
worldwide.

Little research has been conducted to date on
method tailoring specifically. However, two closely
related areas are contingency factors research and
method engineering.

The contingency factors approach to software
development methods (for example, [1, 3]) suggests
that specific features of the development context
should be used to select an appropriate method from

a portfolio of methods. However, one of the funda-
mental problems with the contingency approach in
practice is that an organization is expected to have a
range of methods available to developers who are
expected to be familiar with each and merely choose
the most appropriate one depending on the contin-
gencies of the situation. Close familiarity with even
one method is not all that common in practice among
developers; thus, achieving competence with several
methods is not a realistic expectation. Some of the
later contingency factors research [1] recognized this
fundamental flaw, and suggested a more pragmatic
view, arguing that contingency be built in as a feature
of the method itself. That is, rather than suggesting a
repertoire of methods, the framework of the method
is expected to encompass all situations.

Method engineering research (for example, [8,
10]) suggests a meta-method process whereby meth-
ods are precisely constructed from existing discrete
predefined and pretested method fragments. Among
the challenges posed by method engineering is that a
repository that can store method fragments is
required. The history of CASE suggests that elec-

Motorola is a major software systems provider in
the mobile telecommunications sector. These

systems are very large and expensive switching and
communications infrastructure systems; Motorola
has over 400 engineers working on software develop-
ment in the Cork plant. Clients are typically large
telecommunications providers who purchase
Motorola systems to support their mobile phone net-
works. The nature of the environment in which these
systems operate is one in which users take the
underlying system completely for granted and expect
total reliability—the so-called “dial-tone” test.
Given the fact there are several significant and rep-
utable competitors in the marketplace, the reliability
of Motorola systems is critical. Also, the telecommu-
nications technology area is constantly evolving, with
new products and services continually offered. Sys-
tems are routinely adapted to incorporate interfaces
to these new developments.

The systems themselves are developed using com-
mon languages such as C and C++. Technical person-
nel tend to have a background in engineering or
computer science. Large teams of developers work on
each development project and the development
environment is very formalized. There is clear differ-
entiation between the phases of design, implemen-
tation, and testing. In the case of the latter, special

test laboratory facilities are available for rigorously
testing each system function. The development
process is also very formalized. The organization has
explicitly documented their fundamental software
process, the Cork Organisational Standard Software
Process (OSSP). This is tailored precisely to the
development process for each project and is then
followed rigorously on all projects. New employees
are made aware of the Cork OSSP via induction train-
ing sessions. The OSSP evolves as the company fol-
lows their program for continuous process
improvement that has seen Motorola achieve Level 4
on the Capability Maturity Model (CMM). Satisfying
the concepts of the CMM is important to Motorola,
and a specialist group—the Process Engineering
Group—exists within the Cork facility to ensure the
CMM criteria is complied with. A large amount of
metric data on the development process is collected
and analyzed, and this information is later displayed
on notice boards for the attention of developers.

Given the nature of Motorola’s operating environ-
ment, and the competitive nature of the market-
place, it is vital that errors and downtime are kept to
a minimum. When errors do occur in systems, a very
precise process for handling the situation is man-
dated. All fixes undergo rigorous testing before they
are released to the customer. c

The Software Development Environment at Motorola

COMMUNICATIONS OF THE ACM April 2003/Vol. 46, No. 4 67

tronic support for such an initiative could be quite
problematic.

One marked feature of both contingency and
method engineering approach is they are deductive in
nature in that they propose theoretical arguments as
to how methods should be tailored or constructed.
Very little is available in terms of practical application
of these ideas in real development practice. This gap is
addressed specifically in this study, which is grounded
on method tailoring in practice in a large software
development organization at Motorola, and is in
keeping with the spirit of bridging the chasm between

academic research and software development practice
[7].

The absence of practice-based research in software
development, and in method tailoring in particular, is
surprising in an applied field. We chose to investigate
the nature of method tailoring in practice at Motorola
because it contains many lessons that can benefit both
researchers and practitioners alike. A series of formal
and informal interviews were conducted over a two-
year period with the manager responsible for software
process improvement at Motorola. More formal inter-
views were taped and transcribed. Informal interviews
were used to clarify and refine issues as they emerged.
The findings have been strengthened through the
direct validation of those responsible for the process
being studied.

The Method Tailoring Process at
Motorola
The software development process at Motorola
involves a number of discrete components (see Fig-

ure 1). These components comprise three different
levels: a broad Industry level; a more specific Orga-
nizational level; and the individual Project level.

We have termed the top level of Figure 1 as the
“Industry level.” This reflects the fact the components
are available more or less universally to any organiza-
tion developing software, in that they are part of the
public domain. Here, the two basic elements on
which Motorola, Cork grounds its development
method are the IEEE 1074 software standard [9] and
the V software lifecycle model (V-SLCM, [12]). The
IEEE 1074 standard is a very detailed one that pre-

scribes a set of activities deemed
mandatory for the development
and maintenance of software. It
comprises six high-level stages, 17
process steps, and 65 activities
within these process steps.
Motorola perceives a number of
significant benefits in adopting
the IEEE 1074 standard. Firstly,
it represents an internationally
recognized standard for develop-
ment, one that is evolving, but in
a controlled and rigorous manner.
Also, the standard is complemen-
tary to the Capability Maturity
Model (CMM), which is very
important in Motorola as a means
of assessing the maturity of their
development process, and also as
a mechanism to introduce
improvements to that process.

While the IEEE 1074 standard
is comprehensive, it merely pre-
scribes the processes for the life
cycle. The products of the life cycle

in terms of specific documents and deliverables must
subsequently be mapped to the method. Thus, tailor-
ing is very much an inherent requirement of the IEEE
1074 standard.

A software life-cycle model is a time-ordered
sequence of activities for development. A number of
such models exist, including the traditional Waterfall,
the V-model [12], and the Spiral [2]. The V-model
has been chosen by Motorola to complement the
IEEE 1074 standard. However, by constructing their
development method from discrete components,
Motorola could introduce an alternate life-cycle
model if they wished; indeed, the Spiral model is also
used by Motorola.

At the Organizational level, a number of software
processes exist that are specific to the various parent
divisions within Motorola and naturally they influ-

Figure 1. Head tk.

Spiral
Model

Future Project Processes

Macro-level tailoring

Micro-level tailoring

(The inclusion of these
allows for flexible
contingency)

V Software
Lifecycle Model

Divisional Software Processes

• GSM Product Division
 (GPD)

• Network Product Division
 (NPD)

IEEE 1074 Software Standard

Cork Organisational Standard Software Process (OSSP)

Cork Project-Level Software Lifecycles

Industry
Level

Organis-
ational
Level

Project
Level

Figure 1. Tailoring the
software process at

Motorola.

ence the Cork process. These divisions include the
U.S.-based GSM Product Division (GPD) and the
Network Products Division (NPD). Each of these
divisions has configured their software process to suit
their particular development environment. For exam-
ple, subcontractor management is relevant to the
GPD division but not to the other. Also, Motorola
found some of their common software processes were
not covered in sufficient depth by the IEEE 1074
standard—system testing and software maintenance
issues being two examples. These needed to be fac-
tored into the organizational development process.

Finally, at the Organizational level, it is recognized
that some development projects in the future might

require processes that are not accommodated by the
current method; hence the inclusion of the Future
Project Processes component. One possible example
might be a customer would seek some intermediate
delivery of a product after design and prior to system
testing. This would require a change to the existing
processes. Thus, the existence of the Future Project
Processes component ensures flexibility to cater for
the contingencies that may arise in future develop-
ment scenarios.

Based on these considerations, the overall Cork
Organisational Standard Software Process (OSSP) is
constructed. As can be seen from the earlier discus-
sion, the development process is already characterized
by a good deal of tailoring. However, this tailoring is
at a macro level, and the specifics of the individual
projects have not yet been factored in. At the Organi-
zational level, the main emphasis is on creating a
trusted, rigorous, and reliable software process that
satisfies the sequencing aspects of a software life-cycle
model (in this case, the V model). This results in a
prescription for a consistent method of performing
software development activities, including the
sequencing of activities and the interfaces between
them. The OSSP covers the development life cycle

from initiation until the roll-out and close of the
project. Activities that span the life cycle, such as proj-
ect management, quality assurance, customer sup-
port, operational support, and training are also
included.

In addition, the CMM key process areas (KPAs)1

are explicitly factored into the method at this level.
The desire to adhere to CMM criteria, which requires
a standard measurable software process, motivated the
development of the OSSP. The development process
is measured and monitored in an extremely public
manner. Throughout the Cork offices of Motorola
are charts and graphs that indicate progress on various
measures. All of these initiatives enforce the software

method culture.
Following the construction of

the OSSP, a phase of micro-level
tailoring of the method takes
place at the Project level. This is
where the project-specific charac-
teristics are factored in. In essence,
certain elements of the OSSP are
chosen depending on the opera-
tional needs of the project. Since
the OSSP elements cover all
aspects of the software process,
including those project-specific
practices (for example, subcon-
tractor management or project
planning), and those non-specific
practice (for example, training or

process improvement), the project-specific elements
of the OSSP must be selected to address the opera-
tional needs of the project. The Project level software
lifecycle includes software standards, procedures,
tools, methods, and templates. The project manager
is responsible for this level of tailoring.

Specific characteristics or features of the actual
project under development are then considered and
further refinements to the project life cycle are duly
made. Some of these tailoring decisions will be made
at the start of the project and recorded in the project
plan. For example, if a particular software feature is
judged to be particularly complex, it may be decided
to produce a High-Level Design and a Low-Level
Design specification, as opposed to a simpler Detailed
Design specification. Other tailoring decisions will be
made dynamically in the course of the project. For
example, if commitments change significantly after a
project has started, then an impact assessment of the
changes may cause the Re-Plan Sub-Process to be

68 April 2003/Vol. 46, No. 4 COMMUNICATIONS OF THE ACM

Figure 2. Head tk.

ENTRY CRITERIA

! ! !?
Y

N
Alteration to
Commitments

Perform
Impact

Assessment

Re-Plan
Sub-Process

Project
Re-Plaln

Required?

Review
Current
Schedule

Resources

Respond to
Product

Management

!Legend

Option Action!?

Figure 2. Project level
tailoring example.

1A full discussion of the CMM is beyond the scope of this article. However, the CMM
specifies 18 KPAs central to a mature software process (see [11] for further details).

invoked again, or it may be decided to absorb the
impact in the current schedule. This is further illus-
trated in the process map excerpt in Figure 2.2

The tailoring decision Project Re-Plan Required
must be taken after the Perform Impact Assessment
activity has been completed. The impact assessment
will estimate the effect the commitment alteration is
going to have on the project. This is based on vari-
ables such as code complexity, the functional area
impacted, the number of interfaces affected, and staff
expertise with the new requirement. The decision to
re-plan will result in the Re-Plan Sub-Process being
invoked. In the Re-Plan Sub-Process, artifacts such as
work breakdown structures, logical priorities, and
estimates will be generated, and a new schedule cre-
ated. Based on the new schedule, further tailoring
decisions may need to be made before commitment to
the new schedule, or an alternative, is agreed. This
response is then communicated to product manage-
ment for ratification. Of course if the impact can be
absorbed into the current schedule without re-plan-
ning then the current schedule resources will be
reviewed and adjusted accordingly to accommodate
the alteration.

Tailoring at this level also applies to areas that are
non-project specific. For example, a change to the
test process may or may not require piloting based
on an impact assessment of the process change.
Another example might be to grant a developer a
waiver from a particular training course if the devel-
oper satisfies certain criteria.

Implications and Conclusion
We see in this case an organization that recognized
both the advantages to be gained from using a stan-

dardized software development method and the
need to provide a method that is tailored to fit the
specific requirements of each development project.
The OSSP is reasonably stable although it is
expected to evolve over time, and, indeed, the capa-
bility to evolve is built into the model. It represents
the general process that each project is expected to
follow, encompassing the operational definition of
the fundamental process elements and their inter-
relationships.

The tailoring strategy described here also over-
comes the fundamental problem inherent in both the
method engineering and contingency approaches,
namely, that organizations in practice clearly cannot
afford to wait while a lengthy tailoring process takes
place. In the Motorola case, much of the broad
macro-level tailoring is done in advance—down to
the OSSP at the Organizational level. Then, at the
outset of each individual project, only the precise
project tailoring remains to be accomplished.

Also, this mode of tailoring does not require that
individual developers possess a repertoire of software
development methods from which the appropriate
one is chosen—one of the main criticisms of the con-
tingency approach. Rather, the first macro level of tai-
loring provides a method that is broad-ranging
enough to cater for the range of development projects
to be faced. This facilitates a speedy transition to the
further fine-tuning necessary at the Project level. Nev-
ertheless, the Future Project Processes component (see
Figure 1) allows for the incorporation of features that
may be deemed relevant. The subsequent micro-level
tailoring allows for a precise fit to the unique needs of
each specific project. This dual level of tailoring allows
the valuable CMM elements to be incorporated, but
without sacrificing any local strengths of the develop-
ment process.

The modular division of the software development
method into discrete prime components also has sig-

COMMUNICATIONS OF THE ACM April 2003/Vol. 46, No. 4 69

THE ABSENCE OF PRACTICE-BASED RESEARCH IN SOFTWARE

DEVELOPMENT, AND IN METHOD TAILORING IN PARTICULAR, IS
SURPRISING IN AN APPLIED FIELD. WE CHOSE TO INVESTIGATE THE NATURE

OF METHOD TAILORING IN PRACTICE AT MOTOROLA, AS IT CONTAINS MANY

LESSONS THAT CAN BE OF BENEFIT TO BOTH RESEARCHERS

AND PRACTITIONERS ALIKE.

2The notation used in Figure 2 is based on a process-mapping and tailoring notation
called PROMPT developed by one of the authors. PROMPT [6] is in widespread use
within the Motorola organizations worldwide as well as several other software organi-
zations.

nificant advantages in that individual components
can be upgraded or replaced as new ideas and con-
cepts emerge that may be worthy of investigation.
The Open Source Software development model is an
example of one such concept [4]. Also, an alternative
life-cycle model such as the Spiral can very easily be
incorporated into the standard method. Yet, the
introduction of these new concepts can be imple-
mented in a controlled and rigorous fashion. This
allows the method to adapt over time to fit new proj-
ect requirements. Thus the method provides both the
advantages of standardization and the flexibility to
cater for changes in the development environment.

In the course of this investigation several points
were noted that might prove valuable to other organi-
zations struggling to come to terms with tailoring
issues:

The first of these is at the macro level. Here, the
development of a project-independent standard soft-
ware process, which is also independent of any par-
ticular software life-cycle model, will prove
invaluable. Organizations may wish to use improve-
ment models such as the CMM to guide this devel-
opment and identify the component parts. Creating a
standard software process will allow early identifica-
tion and creation of the process artifacts that will be
required to suit the broad macro-level tailoring
requirements of each software project. If those process
artifacts do not exist, then at least the organization has
anticipated the need to develop them well in advance
of their actual use. For example, a current project may
not require subcontractor expertise, but why wait
until a project has begun to discover the organization
has no process, procedures, tools, templates, and so
on for handling sub-contracted software?

There are essentially two types of tailoring at the
Project level: tailoring planned up front and recorded
as part of the project plan and dynamic tailoring
invoked as the project geometry changes, as is typi-
cally the case in software development, for example,
when additional requirements are discovered. For
both types, the capture and definition of the tailoring
criteria have proven essential for risk management
and overall project success. The sources for these cri-
teria are usually rich and varied and can include pre-
vious project records, project post-mortem minutes,
brainstorming sessions, customer satisfaction sur-
veys/feedback, participant observation, and decision
analysis. Such information can be captured in a data-
base or, in the case of Motorola, Cork, on Web-based
process maps. This information can be treated as liv-
ing documentation, as it is constantly being reviewed
and augmented as the organizational capability devel-
ops. Establishing clear Project level tailoring criteria

will provide a baseline to ensure a consistency of
approach to both project planning and execution-
time contingency planning.

While this type of predefined tailoring may not be
possible in all organizations, this case does illustrate
that tailoring is necessary and feasible, even in rigidly
controlled development environments. Once an orga-
nization reaches the point where it can identify the
various characteristics or contingencies that occur in
its development projects, then it is possible to build
flexibility into the method, along with the rules to
allow developers to identify appropriate choices. Cer-
tainly, the evidence suggests that Motorola has gone
some length to effectively address the problems of the
software crisis, and continues to pursue the path of
continuous improvement. This has resulted in the
organization being independently certified for various
industry standards including CMM and ISO9001.

References
1. Avison, D. and Wood-Harper, A. Information systems development

research: An exploration of ideas in practice. The Computer J. 34, 2
(1991), 98–112.

2. Boehm, B. A spiral model of software development and maintenance.
IEEE Computer 21, 5 (1998), 61–72.

3. Davis, G. Strategies for information requirements determination. IBM
Systems J. 21, 1 (1982), 4–30.

4. Feller, J. and Fitzgerald, B. Understanding Open Source Software Devel-
opment. Addison-Wesley, UK, 2002.

5. Fitzgerald, B. The use of systems development methodologies in prac-
tice: A field study. The Information Systems J. 7, 3 (1997), 201–212.

6. Fitzgerald, B. and O’Kane, T. A longitudinal study of software process
improvement. IEEE Software, May/June (1999), 37–45.

7. Glass, R. Is criticism of computing academe inevitably divisive? Com-
mun. ACM 42, 6 (June 1999), 11–13.

8. Harmesen, F., Brinkkemper, S. and Oei, H. Situational method engi-
neering for IS project approaches. A. Verrijn-Stuart and T. Olle, eds.
Methods and Associated Tools for the IS Life Cycle. Elsevier Science.
North-Holland, 1994, 169–194.

9. IEEE Standard for Developing Software Life Cycle Processes (1991).
IEEE Computer Society, New York, NY.

10. Kumar, K. and Welke, R. Methodology engineering: A proposal for sit-
uation-specific methodology construction. W. Cotterman and J. Senn,
eds. Challenges and Strategies for Research in Systems Development. Wiley
& Sons, Chichester, UK, 1992.

11. Paulk, M., Curtis, B., Chrissis, M. and Weber, C. Capability Maturity
Model for software 1.1. IEEE Software 10, 4 (1993) 18–27.

12. Sommerville, I. Software Engineering. Addison-Wesley, UK, 1992.

Brian Fitzgerald (bf@ul.ie) is Frederick A. Krehbiel II Professor
of Innovation in Global Business and Technology at the University of
Limerick, Ireland.
Nancy L. Russo (nrusso@niu.edu) is an associate professor and
chair of the department of operations Management and Information
Systems at Northern Illinois University, DeKalb, IL
Tom O’Kane (tokane01@motorola.com) is Distinguished Member,
Technical Staff at Motorola, Cork, Ireland.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. To copy otherwise, to republish, to post on servers or to redis-
tribute to lists, requires prior specific permission and/or a fee.

c

70 April 2003/Vol. 46, No. 4 COMMUNICATIONS OF THE ACM

