
Guest Editorial
A further investigation of open source
software: community, co-ordination, code
quality and security issues

In the first part of this double special issue on open source software (OSS) – Information
Systems Journal 11(4) – three papers were presented:

• Striking a balance between trust and control in a virtual organization: a content analysis of
open source software case studies, Michael J. Gallivan, Georgia State University, USA.

• The power of gifts: organizing social relationships in open source communities, Magnus
Bergquist and Jan Ljungberg, University of Gothenburg, Sweden.

• Putting it all in the trunk: incremental software development in the FreeBSD open source
project, Niels Jørgensen, Roskilde University, Denmark.

In keeping with our intention to investigate the methodological/software engineering, psy-
chosocial, and economic/business issues of OSS (Fitzgerald & Feller, 2001), we have selected
four further OSS papers for this issue.

The first paper by Srinarayan Sharma, Vijayan Sugumaran and Balaji Rajagopalan, Oakland
University, USA, is entitled A Framework for Creating Hybrid-OSS Communities. It considers
how the OSS model can be transferred to traditional software development organizations, with
the associated benefits that the OSS model provides. The authors derive a framework based
on the organization theory concepts of structure, process and culture, and use this framework
to analyse OSS in some detail. Based on this analysis, the authors propose a further frame-
work to assist in the creation of hybrid-OSS communities. This latter framework is founded
on concepts of community building, community governance and community infrastructure.

The second paper, Effort, Cooperation and Coordination in an Open Source Software
Project: GNOME, by Stefan Koch and Georg Schneider of the Vienna University of Econom-
ics and Business Administration, Austria, presents a useful quantitative analysis of an actual
OSS development project, the high profile GNOME (GNU Network Object Model Environment)
project. Detailed quantitative studies of OSS have been rare to date, and the findings of this
paper can be compared with other widely cited OSS studies such as the Mockus et al. (2000)
study of the Apache project and the Hermann et al., 2000) study of the Linux kernel devel-
opment community. The paper proposes a number of important findings. For example, it con-
firms the strict division of labour which has always been a suspected characteristic of OSS –

Info Systems J (2002) 12, 3–5 3

© 2002 Blackwell Science Ltd



they observe individuals working in relative isolation on different modules. This strict modu-
larity is critical to achieving the globally distributed, parallel development model of OSS. The
findings also reveal no correlation between the length of time developers are associated with
the project and the amount of code they contribute. This is in marked contrast to traditional
commercial software development where developers work more or less full time on the project.
One possible interpretation of these findings is that much OSS development is contributed
irregularly as developers work in their spare time, which contrasts a little with the findings of
Jorgensen’s study of FreeBSD in the first part of this double special issue. The study also
reveals the presence of core groups in the GNOME project. Although 52 GNOME devel-
opers account for 80% of the code (in contrast to Apache where 15 individuals account for
80% of the code), the GNOME project appears to have an inner core of about 11 develop-
ers who are the most active. Also, GNOME experienced a huge increase in coding contribu-
tions since 1998, coinciding with the rapid rise in popularity of the OSS concept. One of the
most significant contributions of the Koch and Schneider paper is the rigorous estimation of
effort on the GNOME project. This is an important research area as the true cost and resource
consumption on OSS projects is very difficult to estimate and has not featured in previous
research. If the OSS model is to achieve more widespread applicability to software engineering
in general, this type of information must be derived.

The third paper, Code Quality Analysis in Open-Source Software Development, is by Ioannis
Stamelos, Lefteris Angelis, Apostolos Oikonomou and Georgios Bleris, Aristotle University,
Greece. While many have written expansively about the high quality of OSS, very few studies
have attempted to empirically validate the validity of such claims. This paper sets out to do
just that. Using an automated code analysis tool, the authors analysed a random sample of
100 SuSE Linux 6.0 programs, and collected data on 10 metrics related to software quality.
Using a weighted sum aggregation, they concluded that 50% of programs were of accept-
able quality, 31% required further commenting, 9% were in need of inspection, 4% required
further testing, and 6% needed to be completely rewritten. The study also investigated user
satisfaction with these programs. It confirms the extreme importance of modularity, and hence,
information hiding and structured design. This further illustrates the tight coupling between
OSS and fundamental principles of software engineering (cf. Feller & Fitzgerald, 2002).

The final paper, On the Security of Open Source Software, by Christian Payne, Murdoch
University, Australia, tackles the very important issue of the security of open source software,
one of the critical considerations which will determine the long-term sustainability of OSS. He
identifies the positive security implications of those integral aspects of OSS such as source
code auditing and peer review processes. He also discusses the common argument that the
invisibility of source code in closed source systems provides a layer of security through obscu-
rity as bugs or potential security weak points may never be detected. Furthermore, he identi-
fies the fact that in the rush to use open source software, the peer review process does not
always have time to take place in an adequate fashion, as users expect others to perform the
peer review task. The author conducted a detailed quantitative investigation of the issues 
on three projects, Debian GNU/Linux, OpenBSD and Sun Solaris the Debian and OpenBSD
being open source projects while the Solaris system is closed source. The findings reveal that

4 Editorial

© 2002 Blackwell Science Ltd, Information Systems Journal 12, 3–5



Editorial 5

© 2002 Blackwell Science Ltd, Information Systems Journal 12, 3–5

Feller, J. & Fitzgerald, B. (2002) Understanding Open

Source Software Development, London: Addison-

Wesley.

Fitzgerald, B. & Feller, J. (2001) Open Source Software:

Investigating the Software Engineering, Psychosocial

and Economic Issues. Information Systems Journal, 11,

no. 4, pp. 273–276.

Hermann, S., Hertel, G. & Niedner, S. (2000) Linux Study

Homepage, http://www.psychologie.uni-kiel.de/linux-

study/ (accessed 10 May 2001).

Mockus, A., Fielding, R. & Herbsleb, J. (2000) A Case

Study of Open Source Software Development: The

Apache Server. Proceedings of the 22nd International

Conference on Software Engineering, Pp. 263–272.

OpenBSD scores both highest in terms of security features and lowest in relation to security
vulnerabilities, than both Debian and Solaris, with Debian also outperforming Solaris. Thus,
open source would appear to be more secure. Also, even though Solaris represents a closed
source model, the number of security vulnerabilities found is higher than for the other two.
The high score for OpenBSD is argued to be due to the very proactive nature of auditing and
peer review in this project.

Brian Fitzgerald and Joseph Feller

REFERENCES


