A reference model for successful Distributed Development of Software Systems

Brian Lings¹, Björn Lundell¹, Pär J. Ågerfalk²,³ and Brian Fitzgerald²

1: University of Skövde, Sweden
2: University of Limerick, Ireland
3: Uppsala University, Sweden
brian.lings@his.se; bjorn.lundell@his.se; par.agerfalk@ul.ie; brian.fitzgerald@ul.ie

Abstract

Distributed Development (DD) of Software Systems is an issue of increasing significance for organisations today, all the more so given the current trend towards globalisation. In this paper we present a reference model which can be used as a reference point for any company wishing to review their own DD scenario. This is particularised in two forms, one as an exemplar model for a global (GSD) development scenario and one as a particularisation of this for intra-national DD scenarios. By drawing from eight case-studies on DD, we present ten general strategies for successful DD together with our reference model which characterises an ideal DD situation.

1. Introduction

The core challenges of distributed development (DD) of software systems seem to lie in the complexity of maintaining good communication, coordination and control when teams are dispersed in time (e.g. across time zones) and space, as well as socio-culturally. However, proven methods for successful DD have not yet been formulated, and there is a need for a better understanding of the process dimension of DD.

The issue of DD is a complex one, and has been categorised in a number of ways (e.g. [1] [2]). Much of the previous research on DD has concentrated on inter-continental DD (also referred to as GSD), even though a number of companies nowadays are involved in intra-continental and intra-national DD which also implies certain complexity in collaborations between sites. In fact, research has shown that even when the geographical spread of sites is very limited (for example when stakeholders do not naturally share a coffee room), the complexity in such DD needs consideration (e.g. [23]).

By drawing from the case- and field-study literature on DD, and the results from eight case-studies on DD, we present ten general strategies for successful DD together with a reference model which characterises an ideal situation for DD. The reference model is not intended as a blueprint for DD in any organisational context. What is intended is that it should be used to ask the correct questions when setting up a DD activity. The intention is that any inconsistencies with the reference model should be justified in the particular context.

We particularise the reference model for a global (GSD) development scenario and also for an intra-national DD scenario.

2. Research Approach

We have earlier [27] articulated ten strategies for successful DD practice which evolved from an analysis of case- and field-studies reported in the literature. In this paper we report from a deeper analysis which leads to a richer characterisation and justification of those ten strategies. In effect, the strategies represent a basic reference set of strategies for successful DD practice.

It is a fact that the success of each strategy is contingent upon the particular organisational context in which it is used, and so must be tailored to suit each specific situation. Consequently, we have investigated DD practice in DD contexts of 8 companies representing a wide range of company sizes.

Our first set of case studies targeted global software development (GSD), in which temporal, geographical and socio-cultural distances [1] were all high. These studies focused on three large companies, one being a semi-conductor company, one a financial investment company, and one an IT-manufacturer. Each company has headquarters in the USA with development teams within Europe. All three European sites coordinate with their remote colleagues in the USA and with

others, for example in India, Poland and Malaysia. For these, all interviews were conducted at the European sites.

We supplemented these with studies of five companies in which temporal and socio-cultural distances were low, and geographic distance the primary issue. Case studies were conducted in two large companies: a car manufacturing company and a telecom company. These were supplemented with studies in three SMEs. Together, these studies give insight into the processes involved. An analysis was thereby conducted of strategies for open source software success.

Analysis within the case studies initially concentrate on distance in DD along the three distance dimensions (see section 3), as these are the primary indicators of GSD. This also makes it possible to use these case studies, together with other intra-European studies, to investigate the factors primarily related to geographical rather than temporal or socio-cultural distance. This is important in considering the intra-European situation.

Data from each case study was then coded using the empirically grounded strategies evolved from the literature study of previous case- and field-studies in DD. The coded data was then further analysed to provide succinct characterisations of each case. These were then systematically integrated and refined into a reference model for DD, which we particularised for GSD. The idea of a reference model is not that it should be used in all situations; rather it can be used to reason about best practice for a given situation. Deviations from the model should be justified, for example by arguing that distance is reduced in the given context for one or more of the DD dimensions.

One such scenario was considered to be of particular interest in Europe, so a specialised reference model was considered. By analysing the geographical dimension only, and combining further coded data from the other studies, the general reference model was particularised to evolve a reference model for intra-national DD. This is ongoing work, and the results reported here should be considered initial.

Consideration was finally given to open source software development processes as a DD practice. In this case, ‘organisations’ are much less structured and so the process (communication, coordination and control) aspects of the framework were used to gain insight into the processes involved. An analysis was thereby conducted of strategies for open source software success.

3. On Distributed Development of Software Systems

In any software life-cycle process, a number of different kinds of activity are actually undertaken to facilitate the efficient use of multiple developers. These activities can be characterised broadly as communication, coordination and control activities.

In essence, communication is “the exchange of complete and unambiguous information – that is, the sender and receiver can reach a common understanding.” [8] The communication process concerns the transfer of knowledge and information between actors, and the tools used to facilitate such interaction. Coordination is “the act of integrating each task with each organisational unit, so the unit contributes to the overall objective.” [8] The coordination process concerns how this interaction makes actors interdependent on each other: “Two people have a coordination problem whenever they have common interests, or goals, and each person’s actions depend on the actions of the other.” [11, p. 62] Control is “the process of adhering to goals, policies, standards, or quality levels.” [8] The control process concerns the management and reporting mechanisms put in place to make sure a development activity is progressing.

In a context of distributed development of software systems, we recognise that there can be different kinds of distribution, giving rise to temporal, geographical and socio-cultural distances between developers [1]. We characterise each kind of distance in turn. Temporal distance is a directional measure of the dislocation in time experienced by two actors wishing to interact. Temporal distance can be caused by time zone difference or time shifting work patterns. In general, low temporal distance improves opportunities for timely synchronous communication but may reduce management options. Geographical distance is a directional measure of the effort required for one actor to visit another at the latter’s home site. Geographical distance is best measured in ease of relocating rather than in kilometres. In general, low geographical distance offers greater scope for periods of co-located, inter-team working. Socio-cultural distance is a directional measure of an actor’s understanding of another actor’s values and normative practices. As a consequence, it is possible for actor A to be socio-culturally closer to actor B than B is to A. It is a complex dimension, involving organisational culture, national culture and language, politics, and individual motivations and work ethics. In general, low socio-cultural distance improves communication and lowers risk. A development context is considered distributed if it exhibits significant distance in the geographical dimension. We would consider a development team comprising members in two different offices in different cities within the same country to be distributed, even if they exhibit low temporal and socio-cultural distance. The key feature is that the cost
eight global sites. This experience of working with Poland. In the past, certain projects included up to sites including the US, Malaysia, China, India, and development teams work with other teams based at the acquisition of a local company. Here, the software employees worldwide, was established over 35 years ago, and established their presence in Ireland through customer. The company, which has over 90,000 employees world wide. The company develops different types of systems including business administration systems and manufacturing control systems. The site for the study had about 150 employees. The distributed team was in the process of rolling out a new development methodology (RUP) at the time; the method group was located at the main site.

The fifth company is part of a large telecom corporation. The company is divided over several sites both within Sweden and internationally. The largest and dominant site has about 1600 employees. The case study was of a project between two sites within Sweden.

The sixth company is a medium sized, geographically distributed IT company within a large enterprise focused on software intensive systems. It has approximately 230 employees and covers a broad spectrum of business areas such as defence, aviation, automotive, medical and telecoms. The company has a long experience of systematic method work and model based systems development.
The seventh company is a small company specialising in the development of biomedical information systems, and technical and business IT. They use MDA development technologies, with development split over two sites in the North and South of England.

The eighth company is a small IT company which primarily develops bespoke systems, in concert with other companies for large systems. They use open and inner source development and utilise open source software frameworks including Castor, Webworks and Velocity.

5. A reference model for successful DD

In this section we present a reference model for successful DD. The model is evolved from the case and field-studies in DD, informed by ten strategies for DD developed earlier. The reference model is in the form of a rich description of two exemplar companies. One aims to characterise an exemplar company in a GSD context, whereas the other aims to characterise one in an intra-continental DD scenario (in other words where the temporal distance is typically low, such as for nearshoring). Hereafter, we will refer to the former as GSD and the latter as intra-national DD. It should be noted that the reference models are expressed as an ideal type of which no actual organisation may exist. It can be used as a reference against which to compare existing DD practice in a company, or as a reference point for companies interested in moving into DD.

The GSD reference model is developed for a typical international GSD company. The intra-national DD reference model is developed for situations in which DD is adopted in a context in which temporal and socio-cultural distances are low and geographical distance dominates. Such a scenario would typify most intra-European collaborations. All case- and field-studies referred to above have been interpreted in developing these two exemplar models.

5.1 Concerning strategy 1 – Have a clear distribution rationale

Summary of the strategy: Not all projects and not all collaboration contexts are equally amenable to DD. From a context perspective, choose offshore teams with a language in common. It may be advantageous to select for low temporal distance, unless follow-the-sun working is relevant. In any case, guarantee regular working time overlap between sites. Rigorously enforce an acceptable capability maturity level of all partners. From a project perspective, only consider DD for well structured, well understood and stable projects, decomposable into discrete tasks.

Motivation – GSD only: All distributed projects have been proceeded with on the basis of one or more of the following:

- there is a cost advantage to distributing
- the collaboration offers an opportunity to leverage time zone differences, for example for disaster recovery
- an existing team can be scaled cost-effectively, without dramatic impact on it
- the project gains access to skilled employees from top universities
- the company gains through closeness to more customers
- the company was able to keep key workers who had chosen to move

Motivation – intra-national DD only: All distributed projects have been proceeded with on the basis of all except the second bullet above (leveraging time zone differences).

Lowering risk – both GSD & intra-national DD:
Risk of distribution has been lowered for each project by ensuring that the following are already in place:

- a mature team
- clear procedures and processes.

All projects have strict requirements and are large enough to modularise and amenable to splitting into appropriate units of work (not too large or small). Projects are not over-distributed: the smaller a unit the lower the gain in efficiency. Certain phases of the development lifecycle are used in preference to others (e.g. testing) as they are easier to distribute.

Selecting sites – GSD only: True cost is recognised as different from apparent costs. Groups claiming to be CMM level 5 may not be so in practice, so are checked. Some geographical areas are known to suffer from high attrition rates, so managers travel for interviewing key staff. The added costs of socio-cultural distance have been accounted for.

Planning distribution of teams – GSD only: Each site has a critical mass: an effective cluster containing inspirational people capable of motivating others. Teams have been constructed based on known expertise in sites. Teams are not split over more than two geographical zones. Ideally a focus has been given for each site, based on who is where. Lower value-added work is carried out where it is cheapest, but potential for peaky workload has been considered. A considered decision has been made on whether to keep sites relatively independent or deliberately encourage close collaboration. Consideration has been given to possibilities of remote delivery and management of
5.3. Concerning strategy 3 – Leverage modularity

Summary of the strategy: A system architecture mirrors the structure of the organisation which built it (Conway’s law), so for software development work ensure that the architecture of the system is consistent with the distributed structure of the team. This may significantly impact on architectural decisions, but will reduce the need for intensive collaboration and allow optimum utilisation of local skills. For other life-cycle phases plan natural divisions of work in relatively small bundles.

A project is either partitioned functionally or by process within the development lifecycle used by the company.

Functional partitioning – both GSD & intra-national DD: Partitioning for discrete functional parts reduces feature dependency across sites, reducing the need for communication (once or twice a week typically).

Units of work are packaged to reduce the need for coordination, not too small yet not large enough to frustrate.

“Ownership” of largely independent work packets is handed over to a remote site, rather than breaking packages down further. Groups are structured correctly for the allocation strategy, e.g. consistent with its architecture.

Distribution by life-cycle phases – both GSD & intra-national DD: Work is focused on certain phases in the distribution life-cycle, e.g. QA-type testing. However, the site will have been engaged in the project as early as possible – in this example to design the test cases.

5.4. Concerning strategy 4 – Use cultural mediation

Summary of the strategy: Training in cultural issues is useful. Beyond that, use a cultural mediator. This is a person from one team context spending time in another, and becoming a link person between the teams. Many GSD teams use such ‘liaisons’, who may spend short periods relocated or may even be relocated for an entire project – effectively becoming part of a bridgehead. A more radical suggestion is to rotate management across locations (and therefore cultures) to improve awareness.

Close to client – GSD only: Clients will have a single point of contact. Distribution may allow this to be made close by (geographically and culturally) if there is a local site.

5.2. Concerning strategy 2 – Clarify all understandings

Summary of the strategy: At the start of any project agree and communicate project goals and targets, and ensure that commitments are genuinely understood. Define which teams are involved, and what will be done in each location. Further, agree and document binding inter-organisational processes and stabilising processes.

Documentation – both GSD & intra-national DD: Documentation is kept very tight, particularly that associated with status reporting and communication plans. Documentation in a language that is non-native to producers is filtered through native speakers whenever possible. The role of documentation and ways to document at different sites are understood, agreed upon and maintained.

Clarity – both GSD & intra-national DD: Great clarity is maintained over roles and responsibilities, and also expectations. To aid in this, all decisions of meetings (including especially teleconferences) are documented clearly in minutes within a shared repository.

Planning distribution of teams – intra-national DD only: Each site has a critical mass: an effective cluster containing inspirational people capable of motivating others. Teams have been constructed based on known expertise in sites. Ideally a focus has been given for each site, based on who is where. A considered decision has been made on whether to keep sites relatively independent or deliberately encourage close collaboration. Consideration has been given to possibilities of remote delivery and management of customers’ systems. For company roll-out of a project deliverable, all sites using it have been involved. This may have been through an inner or open source initiative. In the case of open source, the company understands open source values and preconditions for utilising open source software, and has been able to form a symbiotic relationship with the community in participating in development.

Concerning strategy 3 – Leverage modularity

Summary of the strategy: A system architecture mirrors the structure of the organisation which built it (Conway’s law), so for software development work ensure that the architecture of the system is consistent with the distributed structure of the team. This may significantly impact on architectural decisions, but will reduce the need for intensive collaboration and allow optimum utilisation of local skills. For other life-cycle phases plan natural divisions of work in relatively small bundles.

A project is either partitioned functionally or by process within the development lifecycle used by the company.

Functional partitioning – both GSD & intra-national DD: Partitioning for discrete functional parts reduces feature dependency across sites, reducing the need for communication (once or twice a week typically).

Units of work are packaged to reduce the need for coordination, not too small yet not large enough to frustrate.

“Ownership” of largely independent work packets is handed over to a remote site, rather than breaking packages down further. Groups are structured correctly for the allocation strategy, e.g. consistent with its architecture.

Distribution by life-cycle phases – both GSD & intra-national DD: Work is focused on certain phases in the distribution life-cycle, e.g. QA-type testing. However, the site will have been engaged in the project as early as possible – in this example to design the test cases.

Concerning strategy 4 – Use cultural mediation

Summary of the strategy: Training in cultural issues is useful. Beyond that, use a cultural mediator. This is a person from one team context spending time in another, and becoming a link person between the teams. Many GSD teams use such ‘liaisons’, who may spend short periods relocated or may even be relocated for an entire project – effectively becoming part of a bridgehead. A more radical suggestion is to rotate management across locations (and therefore cultures) to improve awareness.

Close to client – GSD only: Clients will have a single point of contact. Distribution may allow this to be made close by (geographically and culturally) if there is a local site.

5.2. Concerning strategy 2 – Clarify all understandings

Summary of the strategy: At the start of any project agree and communicate project goals and targets, and ensure that commitments are genuinely understood. Define which teams are involved, and what will be done in each location. Further, agree and document binding inter-organisational processes and stabilising processes.

Documentation – both GSD & intra-national DD: Documentation is kept very tight, particularly that associated with status reporting and communication plans. Documentation in a language that is non-native to producers is filtered through native speakers whenever possible. The role of documentation and ways to document at different sites are understood, agreed upon and maintained.

Clarity – both GSD & intra-national DD: Great clarity is maintained over roles and responsibilities, and also expectations. To aid in this, all decisions of meetings (including especially teleconferences) are documented clearly in minutes within a shared repository.

Planning distribution of teams – intra-national DD only: Each site has a critical mass: an effective cluster containing inspirational people capable of motivating others. Teams have been constructed based on known expertise in sites. Ideally a focus has been given for each site, based on who is where. A considered decision has been made on whether to keep sites relatively independent or deliberately encourage close collaboration. Consideration has been given to possibilities of remote delivery and management of customers’ systems. For company roll-out of a project deliverable, all sites using it have been involved. This may have been through an inner or open source initiative. In the case of open source, the company understands open source values and preconditions for utilising open source software, and has been able to form a symbiotic relationship with the community in participating in development.

Concerning strategy 3 – Leverage modularity

Summary of the strategy: A system architecture mirrors the structure of the organisation which built it (Conway’s law), so for software development work ensure that the architecture of the system is consistent with the distributed structure of the team. This may significantly impact on architectural decisions, but will reduce the need for intensive collaboration and allow optimum utilisation of local skills. For other life-cycle phases plan natural divisions of work in relatively small bundles.

A project is either partitioned functionally or by process within the development lifecycle used by the company.

Functional partitioning – both GSD & intra-national DD: Partitioning for discrete functional parts reduces feature dependency across sites, reducing the need for communication (once or twice a week typically).

Units of work are packaged to reduce the need for coordination, not too small yet not large enough to frustrate.

“Ownership” of largely independent work packets is handed over to a remote site, rather than breaking packages down further. Groups are structured correctly for the allocation strategy, e.g. consistent with its architecture.

Distribution by life-cycle phases – both GSD & intra-national DD: Work is focused on certain phases in the distribution life-cycle, e.g. QA-type testing. However, the site will have been engaged in the project as early as possible – in this example to design the test cases.

Concerning strategy 4 – Use cultural mediation

Summary of the strategy: Training in cultural issues is useful. Beyond that, use a cultural mediator. This is a person from one team context spending time in another, and becoming a link person between the teams. Many GSD teams use such ‘liaisons’, who may spend short periods relocated or may even be relocated for an entire project – effectively becoming part of a bridgehead. A more radical suggestion is to rotate management across locations (and therefore cultures) to improve awareness.

Close to client – GSD only: Clients will have a single point of contact. Distribution may allow this to be made close by (geographically and culturally) if there is a local site.
Close to client – intra-national DD only: Geographical closeness may still be a significant issue. Customers can also show strong regional preferences.

Past enculturation – GSD only: Ensuring that there is an employee from the other region, or a team member with experience of working in the other region, helps with learning the culture.

Increase awareness – GSD only: Managers, particularly from the main site, are encouraged to visit other sites where they have responsibilities. On-site cultural training is undertaken. For example, managers will be made aware that in some cultures it is polite to agree with managers, but that this does not necessarily mean understanding or ability to deliver.

Increase awareness – intra-national DD only: Managers, particularly from the main site, are encouraged to visit other sites where they have responsibilities.

Develop cultural mediation – both GSD & intra-national DD: Periods of relocation both ways between sites is used to build cultural awareness, as well as to improve the sense of individuals being part of a team.

Language training – GSD only: Language can be the hardest problem in meetings. Language training is undertaken to reduce future communication problems.

Language training – intra-national DD only: Language can still be a problem in meetings. Whenever needed, language training is undertaken to reduce future communication problems, particularly if the company has an official language which is not the first language of its country.

5.5. Concerning strategy 5 – Facilitate human communication

Summary of the strategy: Synchronous communication is most effective face to face, but a number of strategies can address the weaknesses of remote communication. Providing rich technologies may help, but improving efficacy of standard technologies is important. A human facilitator in teleconferencing can reduce misunderstandings and smooth conflicts. Language classes can improve confidence and reduce a tendency to asynchronous forms of communication. Increasing informal communication and past face to face meetings can lead to improvements in more formal meetings.

Synchronous – both GSD & intra-national DD: A context switch can cost time (some say 15 minutes), so protocols for synchronous interaction will be evolved. Instant messaging is used for quick questions but is not allowed to become intrusive (presence is not seen as a right to interrupt). Phone is used if the subject is a little vague, and also for monthly 1:1 meetings with peer-level managers or more regular “buddy” contact. Whilst on the phone, sharing of documents is often necessary; email, NetMeeting or similar will be routinely used. Teleconferencing is used for meetings (planning and technical). Regular teleconferences (typically twice weekly for projects) should be from your own desk. Video is currently seen as ineffective so rarely used. Informal chat before meetings is encouraged for ice-breaking. VoIP is only in beta and is not yet considered efficient enough for use, and Skype, a common VoIP application, presents security issues.

Asynchronous – both GSD & intra-national DD: Email is used for more complicated and more formal communication, but is used cautiously in order that it does not get out of hand. It is seen as allowing a time lag in response. Long email chains are problematic – in a distributed environment chains remain active after work finishes at a site. Using only emails for communication with a site or person is not practiced: it is not considered to be very productive. Centralised project information Project information is permanently available, and shows all national holidays across sites, to allow planning.

Centralised project information – both GSD & intra-national DD: Project information is permanently available, and shows all national holidays across sites, to allow planning.

5.6. Concerning strategy 6 – Manage processes

Summary of the strategy: Having one, identified project leader with full responsibility should be supplemented with team and local project managers, even though responsibilities overlap. Regular teleconferences and regular developer reports are recommended for monitoring project status. Plan meetings to occur during overlapping working hours, which can be expanded by timeshifting. Synchronising delivery and integration cycles between partners, and instigating design and code reviews to verify requirements, are important. Incremental development, and release schedules with short cycles are also cited.

Time shifting – GSD only: Follow the sun is not used for software development. Instead, employees often time shift to increase (or establish) the time window during the working day for synchronous communication. Meetings are scheduled to fit the agreed window (e.g. local meetings in the morning in Europe, meetings involving USA in the afternoon). Time zones are sometimes leveraged for handovers at the end of a working day, expecting results at the commencement of the next day. Time zone differences invariably lead to either late working with evening calls from home, or very early working. Out-of-hours
email checks are also common from home, to reduce potential delays otherwise incurred at the other site. This is supported by offering free Internet access and laptops to all employees.

Management – GSD only: Management meetings are held every week or two, and technical meetings every week – or more frequently during design reviews. There will also be 1:1 contact daily with team members. Anyone with a remote manager will have been assigned a local manager for HR issues. A more direct style is sometimes used when managing remote employees. It is recognised that virtual environments more complex to manage as people try to get away with more. Managers will also be aware of the fear and uncertainty within the original staff about exporting jobs.

Clear responsibilities will have been evolved, for example a single point of contact for a feature. Where possible, work schedules will be designed so that individuals are able to reschedule their own work in the event of a delay as the remote manager may not be available. This is to prevent delays in response bringing work to a standstill.

Management – intra-national DD: Most of the points made about GSD apply. Those that are deemphasised are the fear of exporting jobs, and concern about response delays bringing work to a standstill.

5.7. Concerning strategy 7 – Develop a sense of teamness

Summary of the strategy: Common strategies include the development of a project home page, which includes team member details and important planning information such as national holidays. Also summarise project progress as well as planning and team-specific information. Record decisions and make them easily accessible. Ensure timely feedback to communications about progress, including deliverables. Real-time sharing of artefacts, including ideas, perhaps further facilitated by time-shifting.

Team building both GSD & intra-national DD: It takes time to develop relationships, so resources are allocated to help preserve them, not least through effective communication of team activities and project progress. All members know who is in the team, which is brought together occasionally for training etc. – commencing with key individuals at the start. There is an awareness of the tendency to underestimate the ability of other sites (particularly offshore sites in the case of GSD), making them feel like sub-teams, and this is actively countered. Mechanisms are in place to encourage greater involvement, such as promoting specialist communities. Developers are paired across sites, in various ways: perhaps as buddies, pair programmers or with one in a mentoring role.

5.8. Concerning strategy 8 – Encourage temporary collocation

Summary of the strategy: Investing in periods of collocation for teams can reduce future problems in all future processes, but such relocations need planning and can be expensive. Consider collocating developers, not only managers. There may be a one-off project initiation session, where understandings are forged and strategic thinking can take place. There may also be regular (e.g. quarterly) synchronisation and review meetings, but front-loading travel is considered most effective. Variation includes project phasing, with one phase distributed and another phase in-house.

When – both GSD & intra-national DD: Members from a team are brought together early if a new partner site is involved. Other than this, certain phases are recognised as ideal: project initiation and completion; design phase; integration phases; training. In planning collocations, the long-term advantages of trips in both directions are recognised by the company – by developers as well as managers.

How long – both GSD & intra-national DD: Even short periods can be an advantage, but secondments of up to two years are seen as effective; from three to six months is more normal for training.

How often – both GSD & intra-national DD: Travel is restrained by cost, but trust tends to decrease in the absence of face to face meetings so it is supported if a manager requests it.

Complications – GSD only: Travel to the main site may be delayed through visa restrictions, so is planned well in advance. It is recognised that temporary collocation can sometimes result in permanent relocation, and not always within the company.

5.9. Concerning strategy 9 – Address heterogeneity

Summary of the strategy: There can be advantages in accommodating heterogeneous methods, tools and terminology, but such accommodation needs to be planned and catered for. Tool heterogeneity may be forced because of local restrictions (export licensing, available support etc.). Local terms and concepts need to be mapped to a common ontology, to prevent
project-level confusion. One suggested strategy is to provide an interactive process model which can be tailored for each team.

Common tools – both GSD & intra-national DD: Enforcing common tools and processes makes collaboration much easier, but there is a recognised cost in retraining and the delay in attaining maximum productivity from sites currently using different tools and processes.

5.10. Concerning strategy 10 – Develop an effective tool base

Summary of the strategy: A common software configuration management tool is recommended for coordination, probably replicated at each site. This can be enhanced by creative use of the comments fields as an extra form of asynchronous communication. The key thing is to invest in tools that address the real problems. Tool take-up is otherwise low.

Code repositories – both GSD & intra-national DD: A single code repository is enforced, with local tailoring. It is mirrored to address the problem of cross-site backups.

Other repositories – both GSD & intra-national DD: Design artefacts and other documents are also maintained in a central, shared repository. This reduces delays in response because of visibility of current status.

Support tools – both GSD & intra-national DD: Appropriate collaborative development tools are provided, for example to support defect tracking and the gathering of quality metrics. There is standardisation on core technologies, such as visual change control. There is still a need to reduce the technologies used, but strong views are held.

Outsourcing problems of info sharing – both GSD & intra-national DD: Outsourcing brings with it the added problem of access control to the project repositories and so is usually avoided.

Remote access to systems – both GSD & intra-national DD: Collaboration is made more difficult when a remote developer needs access to systems: e.g. tunnelling through firewalls. Expertise is maintained to facilitate such situations.

6. Conclusions

In this paper we have considered eight case studies and the peer reviewed literature on DD processes, specifically focusing on case studies and field studies in DD. The intention has been to group and characterise the strategies proposed from real-world experience for reducing risk in DD and thereby leveraging its opportunities.

We have presented a reference model which can be used as a reference point for any company wishing to review their own distributed development scenario. This is particularised in two forms, one as an exemplar model for a GSD development scenario and one a particularisation of this for intra-national DD scenarios. It is apparent that, although there are a number of situations that fall between those (e.g. intra-continental), we have shown that an ‘ideal’ situation in a company is similarly characterised both in a GSD situation (where the temporal and geographical distances are typically high) and in an intra-national DD situation (where instead geographical and temporal distances are rather limited).

7. Acknowledgements

This research has been financially supported by the European Commission via FP6 Co-ordinated Action Project 004337 in priority IST-2002-2.3.2.3 ‘Calibre’ (http://www.calibre.ie), and by the ITEA project COSI (Co-development using inner & Open source in Software Intensive products) (http://itea-cosi.org) through Vinnova (http://www.vinnova.se/), and also by the Science Foundation Ireland Principal Investigator projects B4-STEP and Lero.

8. References

