
Fitzgerald, B. (1994) The Systems Development Dilemma: Whether to Adopt Formalised Systems Development
Methodologies or Not?, in Baets, W. (Ed) Proceedings of Second European Conference on Information
Systems, Nijenrode University Press, Holland, pp. 691-706.

The Systems Development Dilemma: Whether to Adopt Formalised
Systems Development Methodologies or Not?

Brian Fitzgerald

University College Cork, Ireland

Abstract
Systems development issues occupy a position of central importance in the information systems field and,
indeed, much has been prescribed in the quest for successful systems development. However, given the well-
documented "software crisis", success is far from guaranteed for many systems development projects. Many
researchers see the solution to the software crisis in terms of increased control and the more widespread
adoption of rigorous and formalised system development methodologies (SDMs), and this paper first presents
the arguments and pressures in favour of formalised methodologies. However, the problems associated with the
use of formalised methodologies have not perhaps received as much attention in the literature. A number of
arguments are presented in this paper which question the value of formalised methodologies. These
dichotomous arguments—for and against formalised SDMs—bring about a dilemma for systems developers as
to whether to adopt a formalised development methodology or not. The implications of this dilemma are
discussed in this paper and a number of issues for further research are proposed.

1. Introduction
The importance of successful systems development
takes on even greater significance nowadays in
view of the increasingly complex applications that
need to be developed, and the well-documented
problems associated with systems development
which have given rise to what has been termed the
"software crisis" (cf. Shemer, 1987). There are
many researchers who see the solution to the
software crisis in terms of increased control and
more rigorous and formalised1 system development
methodologies (SDMs). A number of arguments
can be made to support the use of these
methodologies, and these arguments are presented
in this paper. In addition, there are significant
pressures on software developers to adopt more
formalised SDMs, and these pressures are also
discussed. However, the problems associated with

1The term 'formalised' is used here to denote rigorous,
formally-defined development methodologies, of which
there are many examples in the literature, rather than an
ad-hoc approach to systems development, of which there
are many examples in practice. Some writers use the
term 'formal' in this context. However, this leads to
confusion with those methodologies which have a
mathematical basis for specification and design, which
are also labelled as formal.

the use of formalised methodologies have not
perhaps received as much attention in the literature.
A number of arguments are put forward which
question the value of formalised SDMs. These
opposing arguments represent a dichotomy which
leaves systems developers facing a dilemma as to
whether they should adopt more formalised SDMs
or not. This issue is discussed and, finally, an
outline of the research needed to resolve this
dilemma is presented.

2. The Case for Formalised
Methodologies
There are a very large number of SDMs available,
estimated at more than 300 (Longworth, 1985).
Much research has therefore focused on evaluating
and comparing different SDMs—a very
problematic task in itself. Table 1 provides a
summary of this research. Several researchers seem
to make the a priori assumption that the use of
formalised SDMs is necessary and to be
recommended (cf. Ramamoorthy et al, 1986;
Yourdon, 1991). Indeed, some researchers have
reported that in environments where less-
formalised development methodologies are in use,
the trend is to replace them with formalised
development methodologies (Jenkins et al., 1984).
A number of arguments may be made in favour of
formalised SDMs. These arguments are

2

summarised in Table 2 and each is discussed in
detail below.

2.1 Conceptual Basis for Methodologies
Early efforts at systems development often relied
on unsystematic and random methods (Olerup,
1991, Yeh, 1991), although some systematic
approaches to systems development were actually
available (cf. Colter, 1984; Couger, 1973, Taggart
and Tharp, 1977). An important early contribution,
however, was that of Langefors (1973) who, in
arguing for a more formal approach to system
development, outlined the foundations for a theory
of information systems. Langefors adopted a
mechanistic view of organisations with optimal
satisfaction of organisational goals as a central
component, and such a view is evident in many
current system development methodologies (Jones
and Walsham, 1992). He conceptualised systems
development as a rational and scientific process,
and proposed a subdivision of the development
process into deciding what an information system
must do, and how it should do it (Langefors, 1973).
Based on this rational scientific view, prevalent in
many other disciplines, the development process is
broken into the broad categories of analysis of
requirements, design of a solution, and
implementation of that solution (Olerup, 1991).
Thus, operating from an ontological position of
realism, systems development is conceptualised as
a linear model, relying on phases ordered in time
and leading to increasingly-formal defining
documents until the software system eventually
emerges (Floyd, 1987). This leads to the key
concept of a system development life-cycle
(SDLC) which contains as a central premise the
subdivision of system development into several
distinguishable sequential phases (Shemer, 1987),
and which may be traced to the scientific
reductionist mode of enquiry prevalent at the time
(Agresti, 1986).

 One of the widely-cited benefits of the phased
approach to systems development is that it makes
the development process more amenable to project
management and control (Ahituv et al., 1984;
Avison and Fitzgerald, 1988; Floyd, 1987;
McCracken and Jackson, 1981; Ross and Brackett,
1976). At the end of each phase, there is an
opportunity to review progress and to monitor
actual costs and benefits and compare with
expected figures, and this helps to minimise the
risk inherent in systems development projects
(McDonald et al., 1986). Also, since each phase is
comprised of different tasks requiring different

skills, some economics of specialisation are
afforded (Olerup, 1991).

 The economic theme is one mentioned by
Baskerville et al, (1992) in discussing the rationale
behind methods for systems development. They
identify an economic rationale in so far as
methodologies seek to eliminate irrational or
counter-productive activities. Also, by providing a
taxonomy of activities, development methodologies
facilitate the grouping of similar activities and the
reduction of redundant activities. Baskerville et al
also propose an epistemological rationale for
formalised development methodologies. This refers
to the structural framework which methodologies
provide, thereby allowing professionals working in
the field to acquire and classify knowledge.

2.2 Pressures for Increased Formalism
There are a number of very influential sources
which are causing an increased pressure in favour
of the use of formalised development
methodologies. For example, at a broad level the
ISO-certification process, much sought after by
organisations, requires the use of formalised
development processes. Also, major institutions
such as the UK government have mandated the use
of the SSADM (Structured Systems Analysis and
Design Method) methodology for system
development. SSADM is now used on projects
totalling billions of pounds each year (Downs et
al., 1992), and this causes a significant pressure in
the industry to move in this direction--a fact which
is borne out in the large numbers of organisations
supplying consultancy, training, and CASE tools
supporting the SSADM methodology (Downs et
al., 1992). Several other national governments have
also adopted SSADM as the required development
methodology, while countries such as France,
Holland, and Italy have their own formalised
development methodologies.

 Similarly in the US, the Department of
Defense (DoD) have established development
standards (e.g. DoD Std. 2167) for software
development which developers working on DoD
projects must follow. These standards have
emerged from several years' research and are
intended to allow the DoD more visibility and
control with respect to the development process
(Coad and Yourdon, 1991). Also, the DoD have
recently collaborated with the Software
Engineering Institute on the Software Capability
Evaluation (SCE) programme. This programme is
concerned with assessing the capability of
organisations to produce quality software in a
timely and repeatable fashion and it has generated

3

intense focus in the US software industry
(Bollinger and McGowan, 1991). However, this
programme places great emphasis on adherence to
formalised development procedures. Indeed, its
advocates suggest that effective development
requires that all steps in a development
methodology should be carried out regardless of
circumstances (Humphrey et al., 1991). This is a
controversial issue as it fails to take account of
contingencies of any particular situation--a factor
discussed in the next section. This emphasis on
formalised approaches is also consistent with the
classical stage approach to computer growth and
management as proposed by Gibson and Nolan
(1974) which suggests that organisations adopt
more formalised approaches to managing software
processes as they mature.

 There is also a great deal of interest now in
formal mathematically-based methods, such as
VDM, Gist, PAISLey, Z (cf. e.g. Balzer et al.,
1982; Prehn & Toetenel, 1991; Zave, 1984), as a
basis for systems development. These methods
facilitate automatic transformation from
requirements specification to the final system, and
are suggested to be capable of producing higher
quality software at a lower cost than with
conventional methods (Plat et al., 1991). Formal
methods have a mathematical basis and allow
rigorous validation and verification of designs
during the development process (Plat et al., 1991).
This is in contrast to more traditional development
methods which are purely descriptive and rely on
textual descriptions, and which consequently are
prone to imprecision and ambiguity (Alexander and
Potter, 1987; Docker, 1987). Formal methods are
suggested to be necessary for effective software
development (Docker, 1987), and researchers have
reported growing interest by industry in the use of
formal methods (Wing and Zaremski, 1991).

3. The Case against Formalised
Methodologies
The assumption that formalised development
methodologies actually represent the most
appropriate means of solving the software crisis is
open to question. More than 300 different system
development methodologies have been identified
(Longworth, 1985), and at least 17 different
systems development life-cycle variations have
been proposed (Necco et al. 1987). But the
question has been posed as to whether there are
actually substantially different ways to develop
systems (Olle et al. 1991). Systems development
methodologies are attractive and have an intuitive
appeal, but a systems development methodology is

not system development, rather it is a framework
for organising the system development process.
Indeed, a large part of the methodology may go
towards justifying the methodology itself
(Andersen & Mathiassen, 1987). Some of the
problem areas for formalised development
methodologies are summarised in Table 3 and each
is discussed in detail below.

3.1 Definitional problems
When it comes to deciding what actually
constitutes a development methodology, the
definitional quagmire so common in the computing
field becomes apparent. The term methodology is
often misused in that the term actually means 'study
of method' (Olle et al., 1991). However,
methodologies have been variously defined in
terms of models, management practices, technical
practices, tools, training procedures and so on (De
Grace & Stahl, 1990). This theme is echoed by
Maddison et al (1984) who acknowledge the
problem of identifying what actually constitutes a
methodology, and propose a broad inclusive
definition of a development methodology as "a
recommended collection of philosophies, phases,
procedures, rules, techniques, tools, documentation,
management and training for developers of
information systems".

 Given the large number of methodologies
available, some have suggested that there may not
be significant differences between different
methodologies. For example, Constantine, one of
the founding figures of the structured approach,
admits that different development approaches are
actually "based on product differentiation, personal
ego, and territorial imperative" (Constantine,
1989). This view is supported by Veryard (1985)
who suggests that there are trivial differences
between many methodologies. Indeed, it is argued
that the 'software crisis' has been grossly
exaggerated to rationalise new development
approaches in the software development arena
(DeGrace and Stahl, 1990). However, other
researchers point to the fundamental differences
between methodologies in terms of philosophy,
objective and techniques (Avison & Fitzgerald,
1988). Methodologies may differ fundamentally in
paradigm--from 'hard' scientific to 'soft' human-
oriented, and in focus, as some methodologies do
not cover requirements analysis while others do not
cover implementation (Sakthivel, 1992).

 Methodologies have often been constructed
by abstracting some features and techniques from
successful development projects, and formalising
these into a set of guidelines and procedures to

4

form a development methodology, but there may
be little philosophical justification (Maddison et
al., 1984). For example, the structured approach to
systems development, the "most popular systems
development methodology in North America and
Europe" (Yourdon, 1991), was based on the
intuition of its founders that it would work rather
than on any real-world experience (Ward, 1992a).
According to one of the founders, early
investigations of the structured approach were just
"noon hour critiques" (Yourdon & Constantine,
1977). In fact, several areas of weakness in the
structured approach have been identified (cf. Coad
and Yourdon, 1991; Henson and Hughes, 1991;
McMenamin and Palmer, 1984; Ward, 1992a).

3.2 Inadequacies of the Scientific
Paradigm
The underlying paradigm for many development
methodologies is the scientific reductionist one
(Baskerville et al, 1992; Wood-Harper and
Fitzgerald, 1982). There is an a priori assumption
that the solution can be arrived at through a series
of technically devised steps (Davies and Ledington,
1991; Hackathorn and Karimi, 1988) and that the
developer can obtain detailed knowledge about the
problem situation (Giddings, 1984). The latter is
questioned by Jones and Walsham (1992) who
suggest there are "limits to the knowable". They
argue that it is not possible, nor indeed appropriate
in all cases, for the designer to obtain detailed
knowledge about the organisation and design
context. Boland (1979) also questions the extent to
which an organisational problem exists as an
independent reality that can be modelled
beforehand, and he identifies the critical
importance of how the situation is interpreted by
the actors in the situation.

 Other researchers have also questioned the
validity of viewing systems development as a
rational process. For example, Robey and Markus
(1984) argue that while the various phases of
systems development can be explained by rational
motives, they can also be explained as political
rituals which are used to negotiate the private
interests of the various parties concerned. Thus, the
stages in systems development can be explained by
two diametrically-opposed sets of motives--rational
and political. However, the rational motives are the
ones assumed in many traditional systems
development methodologies, and consequently,
they do not cope well with social and human
factors (Bostrom and Heinem, 1977; Floyd, 1987;
Goldkuhl and Lyytinen, 1984). System
development is not just a technical process; social

needs to be considered also (Baskerville et al,
1992; Land et al, 1980). Yet, researchers have
suggested that most development methodologies
only pay lip-service to social aspects and have
argued that treating system development as a
purely-technical process is a "recipe for disaster"
(Hirschheim and Newman, 1991). Consequently,
much research has focused on softer approaches to
systems development which counter these
criticisms (cf. e.g. Checkland, 1984; Floyd, 1987;
Hirschheim and Newman, 1991; Land et al., 1980;
Mumford, 1984; Olerup, 1991).

 Parnas and Clements (1986) also argue that
the rational approach to systems development that
is part of many development methodologies is not
valid, as it is a much less tidy process in practice.
However, they suggest that there are good reasons
for performing some purification on the results of
systems development to "fake" a rational approach
to development. Anyone who must work on the
system after it is developed will want to understand
it, not relive its discovery, and this is best achieved
by access to the polished output of what can
justifiably masquerade as having been a rational
process.

3.3 Shortcomings of the Waterfall Life-
Cycle framework
Most development methodologies follow the
waterfall lifecycle (Davis et al., 1988; Orr, 1989).
The waterfall life-cycle is logical and appeals to
management. It recognises the importance of
analysis and design, rather than rushing to the
program coding phase. In an era when computers
were very expensive and outnumbered by
programmers (Musa, 1983), an initial analytical
phase was logical and sensible. However, there is
an imbalance between analysis and synthesis in the
waterfall life-cycle (Agresti, 1986). Agresti says
that the field has evolved to the point where
synthesis should be more widely used in software
development, and he points to other engineering
disciplines where there is a "rich interplay"
between analysis and synthesis.

 A phased approach, such as that underpinning
the waterfall life-cycle, is actually quite a common
approach to problem-solving in many disciplines.
However, the main problem with the life-cycle
approach in the systems development area has to
do with the rigid and inflexible manner in which it
has generally been applied. Glass (1991) criticises
it as an "ironclad set of rules...an inviolate approach
that has to be followed in just the right order and
just the right way". McCracken and Jackson (1981)
make a similar point. They see the waterfall life-

5

cycle as a project management approach imposed
on the system development process. They criticise
the life-cycle process because it rigidifies thinking,
and they describe the completion of individual
phases in the waterfall approach as leading to a
"sawtooth" model of system development. Several
other researchers have criticised the phase
dependencies implicit in the waterfall life-cycle
(Henson & Hughes, 1991; Parnas & Clements,
1986; Shemer, 1987; Swartout & Balzer, 1982,
Vitalari & Dixon, 1983). In real-life systems
development, there is an inevitable intertwining of
specification and implementation since problems
are dynamic and actually change as they are being
solved. Also, there are wide variations in the
number and labelling of phases in the waterfall
lifecycle (Necco et al., 1987), and it has been
criticised because the granularity of individual
phase steps is too large, thus failing to show all the
elemental processes within each phase (Curtis et
al., 1992).

 A fundamental assumption of the waterfall
life-cycle is that of proceeding from an initial stage
of requirements analysis which are then frozen,
through to solution design and implementation
(Land, Mumford & Hawgood, 1980). However,
there are several flaws inherent in such an
approach. Firstly, modern organisations are
characterised by rapid change--there is no
"organisational stasis" (Chikofsky, 1989).
Therefore, it is not appropriate to consider a fixed
organisational framework when developing
systems as some methodologies do. Brooks (1987)
also contends that the assumption of the waterfall
life-cycle that requirements can be specified in
advance is fundamentally wrong. He states that the
hardest part of systems development is determining
the specification of what to develop. Parnas and
Clements (1986) are in agreement, pointing out that
users typically do not know their complete
requirements, and that there is inevitable
backtracking as development takes place. Davis et
al. (1988) describe user needs as a "moving target"
which are "constantly evolving", and it is therefore
inappropriate to try freeze requirements in the
specification phase. This attempt to finalise
requirements before any development takes place
does not occur in other disciplines (Glass, 1991).
McCracken and Jackson (1981) consider the
situation to be analogous to deciding all item
purchases upon entry to a supermarket. They
suggest that the waterfall life-cycle may have
seemed appropriate in the past due to the
complexity of system development, but it now
perpetuates the failure to bridge the communication
gap between user and analyst.

 Systems development in practice is not an
orderly systematic phased process, rather it
happens "all at once" (DeGrace & Stahl, 1993). In
the waterfall life-cycle the what of requirements
specification is strictly separated from the how of
design. Yet, as Peters (1981) bluntly puts it: "one
cannot state a problem without some rudimentary
notion of what the solution should be". Shemer
(1987) suggests a jigsaw analogy. He argues that
the ultimate design is not achieved in a rational top-
down manner. Rather, information is obtained in
random order; some design is done bottom-up by
guessing at a local pattern, and, simultaneously,
some design is done top-down by following an
apparent pattern. A study by Zelkowitz (1988)
lends validity to this, reporting that 50 percent of
design activity occurs in phases other than the
design phase of the waterfall life-cycle.

 Other approaches to systems development,
such as evolutionary development and prototyping,
have emerged in response to some of the
inadequacies of the waterfall life-cycle, particularly
the suggestion that requirements can be specified in
advance. These approaches are characterised by the
evolutionary nature with which the system is
produced in an iterative fashion, perhaps through a
series of prototypes (cf. e.g. Agresti, 1986; Davis et
al., 1988; Mayhew and Dearnley, 1987; Mansuy,
1989).

3.4 Goal Displacement
One of the most harmful implications that may
arise through the use of a development
methodology is that of goal displacement. This
refers to the situation whereby developers become
preoccupied with slavish adherence to the
methodology at the expense of actual development;
that is, the developer becomes engrossed in
following the methodology and loses sight of the
fact that development of a system is the real goal
(DeGrace & Stahl, 1990). Further compounding the
problem is the fact that many methodologies
include logically-redundant tasks so as to improve
reliability, but developers often perform
unnecessary tasks and omit necessary ones
(Veryard, 1985).

 As discussed above, part of the rationale
behind the use of development methodologies is to
facilitate project management and control of the
development process, and methodologies have an
intuitive appeal for management. However, Glass
(1991) compares the use of a development
methodology to the effect of the Maginot line--
giving the "illusion of quality but hiding
violations". Development methodologies attempt to

6

impose complete solutions when the minimum are
not yet well-defined. A fundamental problem arises
when the methodology is treated in a catechistic
fashion, as this may give rise to an inflexible
approach in which it becomes difficult to take
advantage of opportunities or deal with
contingencies. Glass suggests that the software
field is too young for "premature positions and
posturings". He argues that methodologies focus on
the trappings of design rather than on its essence
which is actually the cognitive activity in the mind
of the developer.

3.5 Assumption that Methodologies are
Universally Applicable
Also, methodologies are often promoted as the
"one-best way" which leads to an elaborate and
bureaucratic" approach to systems development
(Benyon & Skidmore, 1987). There may be a
tendency to blindly follow a development
methodology on the assumption that it is
universally applicable in all situations (Giddings,
1984). This does not give due consideration to the
contingencies of each development situation, since
the developer creates a unique situation for every
project (Avison et al., 1988; Curtis et al., 1988). In
practice, developers frequently do not apply the
methodologies in their complete form as specified
(Chikofsky, 1989, Jenkins et al., 1984). Developers
omit those aspects of the methodology that do not
seem to suit the contingencies of the situation. For
example, the US Department of Defense, whose
strong advocacy of formalised methodologies has
already been discussed, recommends tailoring of
methodologies to suit the particular development
situation (Chikofsky, 1989; Coad and Yourdon,
1991; DeGrace and Stahl, 1990).

 Many other researchers reject the notion of a
slavish and rigid adherence to a development
methodology: Baskerville et al. say that software
development in practice is actually an unstructured
evolutionary process, and they suggest that
methodologies can be a "burden" and a "destructive
tyrant" for the developer. Studies of system
development show that chaos is endemic and
"things happen all at once" (DeGrace & Stahl,
1993). In many instances, however, development
methodologies are inflicted on developers rather
than made available, and a rigid dogmatic approach
to development is taken. However, there is a need
to be able to step outside the methodology to take
advantage of opportunities or to deal with
exigencies that may arise. Also, an interesting
finding emerges from a study by DeMarco and
Lister (1989) which shows that even in

organisations where methodologies are rigidly
enforced, there is very poor convergence on design
style among different developers. This again
reinforces the point that development
methodologies cannot be inflicted on developers.

3.6 Inadequate Recognition of People
Factors
Boland (1979) argues that organisational problem
situations do not exist as an independent reality but
require human interpretation, a point also raised by
Davies & Ledington (1991). This is dependent on
the people involved and as Checkland (1984)
points out, "uniformity of perception cannot be
imposed on autonomous human beings". The
ingenuity and ability of the developer cannot be
compounded into any development methodology.
At a simplistic level, considering an analogy
between cookbooks and development
methodologies, no one believes that merely having
access to the same cookbook would cause all chefs
to be equally proficient. However, the varied skill
levels of different developers is not acknowledged
in formalised development methodologies. For
example, one of the explicit goals of the Jackson
Systems Development (JSD) methodology is to
eliminate personal creativity from the development
process (King and Pardoe, 1985). Yet, Brooks
(1987) suggests that systems development is a
creative process and that a methodology cannot
"inspire the drudge". The importance of individual
differences in system development has been
acknowledged by several researchers. Boehm
(1981) reports that the people factors have more
than six times greater effect on development
productivity than the use of software tools. Brooks
(1987) is in accord with this view and he
recommends that processes be put in place to
nourish creative people. He states that few fields
have such a large gap between best current practice
and average practice. Indeed, Glass (1991) reports
differences of up to 30 to 1 between software
developers.

 Nor do methodologies allow for the learning
experience and greater problem domain knowledge
that developers gain over time. Yet, in a
comparative study of successful and unsuccessful
systems analysts, Vitalari and Dickson (1983)
emphasise the importance of learning over time.
They conclude that developers acquire a "repertoire
of strategies" to apply in different system
development situations. This is in accord with
Davis and Olson (1985) who suggest that
developers gain more domain knowledge over time
and that this is a vital factor in successful system

7

development. To view system development as an
orderly progression from requirements analysis to a
solution designed purely around those requirements
is to miss the critical synergy between developer
and user. Curtis et al. (1988) have suggested that
both the developer and user learn through a
dialectic approach, in that by hearing about
potential capabilities of the system, users envision
new features (Swartout & Balzer, 1982). Vitalari
and Dickson (1983) report that successful designers
learn a great deal through trial and error. Therefore,
an idealised approach to system development as
portrayed in a methodology may be seriously
flawed since it omits the fact that failure is essential
to human learning.

4. Whither Systems Development?
While the rationale behind the use of formalised
development methodologies is persuasive, the
arguments against the use of formalised
methodologies are also compelling. In practice,
however, many practitioners do not use a
formalised system development methodology
(Avison & Fitzgerald, 1988; Page-Jones, 1991;
Ward, 1992a). A number of reasons have been put
forward to explain this. For example, it has been
suggested that the failure to use a formalised
methodology is due to a "wealth of ignorance"
among the "great unwashed masses" (Ward, 1991),
and the failure of practitioners to use development
methodologies is seen as a weakness on their part
(Page-Jones, 1991). Also, it has been suggested
that it takes about 15-20 years for technology
transfer to achieve sufficient maturity for general
use (Chikofsky, 1989), and that this is what has
delayed the adoption of methodologies. However,
in all this research, there is an implicit assumption
that the failure of practitioners to use formalised
methodologies has been to the detriment of systems
development.

 Non-use of a methodology is not a licence to
conduct development in a sloppy or careless
manner. Those who suggest that the failure of
practitioners to use a formalised methodology is
due to ignorance or a lack of awareness on their
part may not be presenting a totally-accurate
picture. An appropriate analogy might be that of
Picasso dispensing with conventional artistic
perspective, but from a position of superior
knowledge. Likewise, many practitioners may be
well aware of the limitations of formalised
methodologies and may have rejected them for
pragmatic reasons. As a practitioner with over 10
years experience of systems development in
different organisations on many different

applications, the author has yet to witness a
development project where a formalised
development methodology was faithfully adhered
to. In practice, situations will inevitable arise where
the developer needs to step outside the
methodology, but formalised methodologies often
serve to impose a considerable inertia on the
development process. Indeed, the degree of inertia
is proportional to the degree of formality of the
methodology.

 A number of factors were discussed earlier as
being very important to the success of the system
development process. These include the critical
differences in capabilities between developers; the
importance of learning over time, both in terms of
ensuring increased problem domain knowledge and
also the exposure to a variety of technical problem-
solving strategies. The ability to use intuition in an
appropriate manner is also an important asset for
systems developers. However, these are all factors
which are not adequately catered for in formalised
development methodologies. Systems development
is not just about knowing the phases and activities
involved in a development methodology, rather the
developer should comprehend the underlying
concepts. Development methodologies are just an
organising framework, and are only meaningful
when applied by people. It is important, therefore,
that a methodology fully leverages the wisdom of
the developer, arising both from individual ability
and past learning experiences, if it is to make the
most effective contribution to the development
process.

4.1 Pressures for New Approaches to
Systems Development
There are a number of pressures for new and
radical approaches to systems development which
do not support the use of formalised development
methodologies. The accelerating pace of change
characteristic of the business environment facing
organisations today is a common theme in
contemporary research. Rockart and De Long
(1988) refer to the "faster metabolism of business
today" which requires organisations to act
effectively in shorter time-frames. Researchers
have estimated a need for a ten-fold increase in
system development productivity (Verity, 1987),
but formalised methodologies for systems
development are oriented towards large-scale
development with a long development time. Given
the continuous change that organisations are now
faced with, short-term needs dominate, and these in
turn mean that the economics of formalised
systems development is dwindling (Baskerville et

8

al., 1992). Developers do not have the luxury of
being able to patiently follow a comprehensive
methodology. Indeed, the truncation of some
phases in the development process is seen as
inevitable (Brown, 1985).

 In many disciplines there is a natural
progression of improving the process by which
products are produced. The situation is no different
in the software field. Development methodologies
are becoming more complex; for example,
methodologies such as Information Engineering,
SSADM, and Multiview are very comprehensive
and address a broad range of phases involved in
software development. These methodologies are
evolving as new concerns and areas of focus
emerge in the field. This type of evolution is
consistent with the views of philosophers of
science, such as Lakatos (1970) who argues that as
disciplines progress, they erect a protective belt of
sub-theories around core theories to cater for
problem areas and criticisms. However, Kuhn
(1962) suggests that progress in science requires
that established paradigms are eventually
overthrown and replaced, often with conceptually-
cleaner paradigms. In the software field,
researchers have suggested that improving the
process by which software is developed can only
have a limited effect, and that a software industrial
revolution which focuses on radically new ways to
achieve the software product is necessary, and,
consequently, new paradigms for systems
development have been advocated (cf. Agresti,
1986; Cox, 1990).

4.2 Further Research
Boehm (1988) has criticised the focus of research
in the software field as being directed towards
certain well-understood areas while neglecting
other areas which are less well-understood but
equally important. He proposes the analogy of a
drunk losing his watch and looking for it under the
light of a lamppost because it was the brightest
place even though he had lost it somewhere else.
The situation may be similar with the excessive
focus on formalised methodologies, in that it may
be case of looking under the lamppost. Certainly,
Lewis and Oman (1990) claim that in 20 years,
systems development has "evolved to little more
than a black art", and Wasserman's contention
(1981) that the greatest boost to systems
development productivity would be to teach
programmers the skills of touch-typing has yet to
be refuted.

 Researchers have criticised the lack of
empirical research on systems development in real

organisational contexts (Jenkins et al., 1984). As
McLean (1973) aptly put it: "the proper place to
study elephants is the jungle, not the zoo". More
research is therefore needed into the actual practice
of systems development in organisations,
justifiable even solely on the basis that practice has
often preceded theory in the field. Programming
style, compiler writing, user-interface design are all
areas where practice led theory (Glass, 1991). The
Sage missile-defense system and the Sabre airline
reservation system, developed in the 1950s and
1960s, were both examples of sophisticated
interactive systems which far exceeded the
maturity of the theory at the time (Shaw, 1990).
Also, given the wide gap between the best and
average practice in the software field (cf. Boehm,
1981; Brooks, 1987; Glass; 1991), it is important to
discover the essentially good practices of good
systems developers, so that these can be transferred
to other developers. All too often, however,
theorists fail to consider practice when it might be
appropriate to do so, and, vice versa, practitioners
fail to heed theorists when it might be beneficial.
Researchers have criticised the gap between theory
and practice, whereby theorist and practitioners are
isolated from each other and move in different
directions, labelling it a "bipolar drift (in which)
both poles are cold" (Chang, 1990).

 This paper is preliminary in nature,
presenting as it does the dichotomous arguments
which bring about a dilemma for system developers
as to whether to adopt a formalised SDM or not.
The next stage of this research will be to
empirically examine the issues raised in this paper.
Among the specific research questions to be
answered are the extent to which formalised
methodologies are actually used; whether they are
followed faithfully or modified; in the cases where
formalised methodologies are not used, whether
this is due to ignorance, or for more pragmatic
reasons; the benefits that accrue from the use of
formalised methodologies; the situations where
developers would consider using or not using a
methodology.

 By addressing these issues, the research
should thus help to ascertain whether practitioners
are indeed moving towards more formalised
development methodologies as has been suggested
and, indeed, recommended; or whether there is a
sense in which software development is perhaps
beyond method in some circumstances. Given the
dichotomous nature of the arguments posed in this
paper, it is perhaps worth bearing in mind Niels
Bohr's reminder that the opposite of a great truth is
also true. In other words, while for many
researchers the use of formalised development
methodologies is unquestionably beneficial and

9

represents a great truth, the opposite view, namely,
that systems development without formalised
development methodologies may also be
appropriate, is no less a truth.

Bibliography

Agresti, W. (1986) New Paradigms for Software
Development. IEEE Computer Society Press,
Washington DC.

Ahituv, N., Hadass, M. and Neumann, S. (1984) A
flexible approach to information system
development. MIS Quarterly, June, 69-78.

Alexander, H. and Potter, B. (1987) Case study: the use
of formal specification and rapid prototyping
to establish product feasibility. Information &
Software Technology, September, 388-393.

Andersen, P. and Mathiassen, L. (1987) Systems
development and use: a science of truth or a
theory of lies. In Computers and Democracy:
A Scandinavian Challenge. Bjerknes, G., Ehn,
P., and King, M. (Eds), Avebury Gower,
Brookfield Vermont.

Avison, D. and Fitzgerald, G. (1988) Information
Systems Development: Methodologies,
Techniques and Tools. Blackwell Scientific
Publications, Oxford.

Avison, D., Fitzgerald, G. and Wood-Harper, A. (1988)
Information systems development: a tool kit is
not enough. The Computer Journal, 31, 4,
379-380.

Balzer, R., Goldman, N. and Wile, D. (1982)
Operational specification as the basis for rapid
prototyping. ACM Sigsoft Software
Engineering Notes, 7, 5, 3-16.

Banbury, J. (1987) Towards a framework for systems
analysis practice. In Boland, R and
Hirschheim, R. (eds.) Critical Issues in
Information Systems Research, John Wiley
and Sons, 79-111.

Bantleman, J. and Jones, A. (1984) Systems analysis
methodologies: a research project. In
Bemelmans, T. (ed.) Beyond Productivity:
Information Systems Development for
Organisational Effectiveness, Elsevier Science
Publishers B.V., North Holland Press, 213-
227.

Baskerville, R., Travis, J. and Truex, D. (1992)
Systems without method: the impact of new
technologies on information systems
development projects. In Kendall, K.,
DeGross, J. and Lyytinen, K. (eds.) The
Impact of Computer Supported Technologies
on Information Systems Development, Elsevier
Science Publishers B.V., North Holland Press,
241-269.

Benyon, D. and Skidmore, S. (1987) Towards a toolkit
for the systems analyst. The Computer
Journal, 30, 1, 2-7.

Boehm, B. (1981) Software Engineering Economics.
Prentice Hall, Englewood Cliffs, New Jersey.

Boehm, b. (1988) In Gilb, T. Principles of Software
Engineering Management, Addison Wesley,
UK.

Boland, R. (1979) Control, causality and information
systems requirements. Accounting,
Organizations and Society, 4, 259-275.

Bollinger, T. and McGowan, C. (1991) A critical look
at software capability evaluations. IEEE
Software, July, 25-41.

Bostrom, R. and Heinem, J. (1977) MIS problems and
failures: a socio-technical perspective--Part I:
the causes. MIS Quarterly, September, 17-32.

Brooks, F. (1987) No silver bullet: essence and
accidents of software engineering. IEEE
Computer Magazine, April, 10-19.

Brown, P. (1985) Managing software development.
Datamation, April 15, 133-136.

Chang, C. (1990) Editor's message: let's stop the
bipolar drift. IEEE Software, May, 4.

Checkland, P. (1981) Systems Thinking, Systems
Practice, Wiley, Chichester.

Checkland, P. (1984) Systems theory and information
systems. In Bemelmans, T. (ed.) Beyond
Productivity: Information Systems
Development for Organisational Effectiveness,
Elsevier Science Publishers B.V., North
Holland Press, 9-21.

Chikofsky, E. (1989) How to lose productivity with
productivity tools. Proceedings of 3rd
IFAC/IFIP Workshop, Indiana, US, 1-4.

Coad, P. and Yourdon, E. (1991) Object-Oriented
Analysis, (2nd Edition), Yourdon Press, New
Jersey.

Colter, M. (1984) A comparative examination of
systems analysis techniques. MIS Quarterly,
March, 51-66.

10

Constantine, L. (1989) The structured design approach.
Byte, April, 232-233.

Couger, J. (1973) Evolution of business systems
analysis techniques. Computing Surveys, 5, 3,
167-198.

Cox, B. (1990) Planning the software industrial
revolution. IEEE Software, November, 25-33.

Curtis, B., Kellner, M. and Over, J. (1992) Process
Modelling. Communications of the ACM,
September, 75-90.

Curtis, B., Krasner, H. and Iscoe, N. (1988) A field
study of the software design process for large
systems. Communications of the ACM,
November, 1268-1287.

Davies, L. and Ledington, P. (1991) Information in
Action: Soft Systems Methodology. Macmillan
Press, London.

Davis, A., Bersoff, E. and Comer, E. (1988) A strategy
for comparing alternative software
development life cycle models. IEEE
Transactions on Software Engineering,
October, 1453-1460.

Davis, G. (1982) Strategies for information
requirements determination. IBM Systems
Journal, 21, 1, 4-30.

Davis, G. and Olson, M. (1985) Management
Information Systems: Conceptual
Foundations, Structure and Development,
McGraw-Hill, New York.

De Grace, P and Stahl, L. (1990) Wicked Problems,
Righteous Solutions: A Catalogue of Modern
Software Engineering Paradigms. Yourdon
Press, Prentice Hall, Englewood Cliffs, New
Jersey.

DeGrace, P. and Stahl, L. (1993) The Olduvai
Imperative: CASE and the State of Software
Engineering Practice, Yourdon Press, Prentice
Hall, Englewood Cliffs, New Jersey.

De Marco, T. and Lister T. (1989) Software
development: state of the art v. state of the
practice. 11th International Conference on
Software Engineering, 271-275.

Docker, T. (1987) A flexible software analysis tool.
Information & Software Technology,
January/February, 21-26.

Downs, E., Clare, P. and Coe, I. (1992) Structured
Systems Analysis and Design Method:
Application and Context. Prentice-Hall
International(UK), Hertfordshire.

Floyd, C. (1987) Outline of a paradigm change in
software engineering. In Computers and

Democracy: A Scandinavian Challenge.
Bjerknes, G., Ehn, P., and King, M. (Eds),
Avebury Gower, Brookfield Vermont.

Gibson, C. and Nolan, R. (1974) Managing the four
stages of EDP growth. Harvard Business
Review, 52, 76-88.

Giddings, R. (1984) Accommodating uncertainty in
software design. Communications of the ACM,
May, 428-434.

Glass, R. (1991) Software Conflict: Essays on the Art
and Science of Software Engineering.
Yourdon Press, Prentice Hall, Englewood
Cliffs, New Jersey.

Goldkuhl, G. and Lyytinen, K. Information systems
specification as rule construction. In Kendall,
K., DeGross, J. and Kyytinen, K. (eds.)Beyond
Productivity: Information Systems
Development for Organisational Effectiveness,
Elsevier Science Publishers B.V., North
Holland Press, 79-94.

Gould, J. and Lewis, C. (1985) Designing for usability:
key principles and what designers think.
Communications of the ACM, March, 300-
311.

Gremillion, L. and Pyburn, P. (1983) Breaking the
systems development bottleneck. MIS
Quarterly, March/April, 130-137.

Guimares, T. (1985) A study of application program
development techniques. Communications of
the ACM, May, 494-499.

Hackathorn, R. and Karimi, J. (1988) A framework for
comparing information engineering methods.
MIS Quarterly, June, 202-220.

Henson, K. and Hughes, C. (1991) A two-dimensional
approach to systems development. Journal of
Information Systems Management, Winter,
35-43.

Hirschheim, R. (1985) User experience with and
assessment of participative systems design.
MIS Quarterly, December, 295-304.

Hirschheim, R. and Newman, M. (1991) Symbolism
and information systems development: myth,
metaphor and magic. Information Systems
Research, 2, 1, 29-62.

Humphrey, W., Snyder, T. and Willis, R. (1991)
Software process improvement at Hughes
Aircraft. IEEE Software, July, 11-23.

Jenkins, A., Naumann, J. and Wetherbe, J. (1984)
Empirical investigation of systems
development practices and results. Information
& Management, 7, 73-82.

11

Jones, M. and Walsham, G. (1992) The limits of the
knowable: organizational and design
knowledge in system development. In
Kendall, K., DeGross, J. and Lyytinen, K.
(eds.) The Impact of Computer Supported
Technologies on Information Systems
Development, Elsevier Science Publishers
B.V., North Holland Press, 195-213.

King, M. and Pardoe, J. (1985) Program Design using
JSP: A Practical Introduction, Macmillan,
London.

Kuhn, T. (1962) The Structure of Scientific
Revolutions, University of Chicago Press,
Chicago.

Lakatos, I. (1970) Criticisms of the Growth of
Knowledge, Cambridge University Press,
Cambridge.

Land, F., Mumford, E. and Hawgood, J. (1980)
Training the systems analyst of the 1980s: four
analytical procedures to assist the design
process. In Lucas, H., Land, F., Lincoln, and
Supper (eds.) The Information Systems
Environment, North Holland Press, 239-256.

Langefors, B. (1973) Theoretical Analysis of
Information Systems, Auerbach, Philadelphia.

Lewis, T. and Oman, P. (1990) The challenge of
software development. IEEE Software,
November, 9-12.

Longworth, G. (1985) Designing Systems for Change.
NCC, Manchester.

McCracken, D. and Jackson, M. (1981) A minority
dissenting position. In Agresti, W. (1986) New
Paradigms for Software Development. IEEE
Computer Society Press, Washington DC.

McDonald, C., Riddle, W. and Youngblut, C. (1986)
STARS methodology area summary. ACM
Software Engineering Notes, 11, 2, 58-85.

McLean, E. (1973) In Van Horn, R. Empirical studies
of management information systems.
DataBase, Winter, 172-180.

McMenamin, S. and Palmer, J. (1984) Essential
Systems Analysis, Yourdon Press, Prentice
Hall, Englewood Cliffs, New Jersey.

Maddison, R., Baker, G., Bhabuta, L., Fitzgerald, G.,
Hindle, K., Song, J.,Stokes, N. and Wood, J.
(1984) Feature analysis of five information
system methodologies. In Bemelmans, T. (ed.)
Beyond Productivity: Information Systems
Development for Organisational Effectiveness,
Elsevier Science Publishers B.V., North
Holland Press, 277-306.

Mahmood, M. (1987) System development methods- a
comparative investigation. MIS Quarterly,
September, 293-311.

Mansuy, J. (1989) Evolutionary development strategy
for MIS. Journal of Systems Management,
July, 7-13.

Martin, J. and Finkelstein, C. (1981) Information
Engineering, Savant Institute, UK.

Mayhew, P. and Dearnley, P. (1987) An alternative
prototyping classification. Computer Journal,
30, 6.

Mumford, E. (1984) Participation- from Aristotle to
today. In Bemelmans, T. (ed.) Beyond
Productivity: Information Systems
Development for Organisational Effectiveness,
Elsevier Science Publishers B.V., North
Holland Press, 95-104.

Musa, J. (1983) Stimulating software engineering
progress. ACM Software Engineering Notes, 8,
2, 29-54.

Necco, C., Gordon, C. and Tsai, N. (1987) Systems
analysis and design: current practices. MIS
Quarterly, December, 1987.

Olerup, A. (1991) Design approaches: a comparative
study of information system design and
architectural design. The Computer Journal,
34, 3, 215-224.

Olle, T., Sol, H. and Verrijn-Stuart, A. (1982)
Information Systems Design Methodologies: A
Comparative Review, North-Holland.

Olle, T., Sol, H. and Tully, C. (1983) Information
Systems Design Methodologies: A Feature
Analysis, North-Holland.

Olle, T., Sol, H. and Verrijn-Stuart, A. (1986)
Information Systems Design Methodologies:
Improving the Practice, North-Holland.

Olle, T., Hagelstein, J., Macdonald, I., Rolland, C., Sol,
H., Van Assche, F. and Verrijn-Stuart, A.
(1991) Information Systems Methodologies: A
Framework for Understanding. Addison-
Wesley.

Orr, K. (1989) Methodology: the experts speak. BYTE,
April, 221-233.

Page-Jones, M. (1991). Structured methods are dead:
long live structured methods. American
Programmer, November, 31-37.

Parnas, D. and Clements, P. (1986) A rational design
process: how and why to fake it. IEEE
Transactions on Software Engineering,
February, 251-257.

12

Peters, L. (1981) Software Design: Methods and
Techniques. Yourdon Press, New York.

Peters, L. and Tripp, L. (1977) Comparing software
design methodologies. Datamation,
November, 89-94.

Plat, N., Katwijk, J. and Pronk, K. (1991) A case for
structured analysis/formal design. In VDM '91:
Formal Software Development Methods,
Prehn, S. and Toetenel, W. (Eds), Vol. 1,
Springer-Verlag.

Prehn, S. and Toetenel, W. (1991) VDM '91: Formal
Software Development Methods, Vol. 1,
Springer-Verlag.

Ramamoorthy, C., Garg, V. and Prakash, A. (1986)
Programming in the large. IEEE Transactions
on Software Engineering, July, 769-783.

Robey, D. and Markus, M. (1984) Rituals in
information system design. MIS Quarterly,
March, 5-15.

Rockart, J. and De Long, D. (1988) Executive Support
Systems, Dow Jones-Irwin, Homewood,
Illinois.

Ross, D. and Brackett, J. (1976) An approach to
structured analysis. Computer Decisions,
September, 40-44.

Sakthivel, S. (1992) Methodological requirements for
information systems development. Journal of
Information Technology, 7, 141-148.

Shaw, M. (1990) Prospects for an engineering
discipline of software. IEEE Software,
November, 15-24.

Shemer, I. (1987) Systems analysis: a systematic
analysis of a conceptual model.
Communications of the ACM, June, 506-512.

Soloway, E., Littman, D., Soloway, E., and Black, J.
(1983) You can observe a lot by just watching
(how designers design). Eighth Annual
Software Engineering Workshop.

Song, X. and Osterweil, L. (1992) Toward objective,
systematic design-method comparisons. IEEE
Software, May, 43-53.

Sumner, M. and Sitek, J. (1986) Are structured
methods for systems analysis and design being
used? Journal of Systems Management, June,
18-23.

Swartout, W. and Balzer, R. (1982) On the inevitable
intertwining of specification and
implementation. Communications of the ACM,
July, 438-440.

Taggart, W. and Tharp, M. (1977) A survey of
information requirements analysis techniques.
Computing Surveys, 9, 4, 273-290.

Verity, J. (1987) The OOPS revolution. Datamation,
May 1, 73-78.

Veryard, R. (1985) What are methodologies good for?
Data Processing, July/August, 9-12.

Vitalari, N. and Dickson, G. (1983) Problem solving
for effective systems analysis: an experimental
exploration. Communications of the ACM,
November, 948-956.

Ward, P. (1991) The evolution of structured analysis:
Part I--the early years. American Programmer,
4, 11, 4-16.

Ward, P. (1992a) The evolution of structured analysis:
Part II--maturity and its problems. American
Programmer, 5, 4, 18-29.

Ward, P. (1992b) The evolution of structured analysis:
Part III--spin-offs, mergers, and acquisitions.
American Programmer, 5, 9, 41-53.

Wasserman, A. (1981) In Chikofsky, E. (1989) How to
lose productivity with productivity tools.
Proceedings of 3rd IFAC/IFIP Workshop,
Indiana, US, 1-4.

Wing, J. and Zaremski, A. (1991) Unintrusive ways to
integrate formal specifications in practice. In
VDM '91: Formal Software Development
Methods, Prehn, S. and Toetenel, W. (Eds),
Vol. 1, Springer-Verlag.

Wood-Harper, A. and Fitzgerald, G. (1982) A
taxonomy of current approaches to systems
analysis. The Computer Journal, 25, 1, 12-16.

Yeh, R. (1991) System development as a wicked
problem. International Journal of Software
Engineering and Knowledge Engineering, 1,
2, 117-130.

Yourdon, E. (1991) Sayonara, once again, structured
stuff. American Programmer, 4, 11, 40-49.

Yourdon, E. and Constantine, L. (1977) Structured
Design, Yourdon Press, New York.

Zave, P. (1984) The operational versus the
conventional approach to software
development. Communications of the ACM,
February, 104-118.

Zelkowitz, M. (1988) Resource utilisation during
software development. Journal of Systems and
Software, 8, 331-336.

13

Table 1: Summary of Research on System Development Methodologies

 CRIS reviews:

 CRIS--Comparative Review of Information Systems design methodologies represents a task
group set up within IFIP Working Group 8.1. This task group was established in the early
1980s and its objective was to review available methodologies, conduct a feature analysis
of available methodologies, and finally, to provide a synthesis of available methodologies,
thus clarifying the issue of what methodologies are appropriate in different situations

 (Olle et al., 1982; 1983; 1986; 1991)

 Conceptual studies:

 Methodology taxonomies
 Methodology comparisons
 Feature analyses
 Frameworks for evaluating methodologies

 (Avison & Fitzgerald, 1988; Banbury, 1987; Bantleman & Jones, 1984; Colter, 1984;
Davis, 1982; Davis et al., 1988; Giddings, 1984; Gremillion & Pyburn, 1983;
Hackathorn & Karimi, 1988; Maddison et al., 1984; McDonald et al., 1986;
Peters & Tripp, 1977; Shemer, 1987; Song & Osterweil, 1992; Wood-Harper &
Fitzgerald, 1982; Yeh, 1991)

 Empirical studies of development approaches:

 (Curtis et al., 1988; Gould & Lewis, 1985; Guimares, 1985; Hirschheim, 1985;
Jenkins et al., 1984; Mahmood, 1987; Necco et al., 1987; Soloway et al., 1983;
 Sumner & Sitek, 1986; Vitalari & Dickson, 1983)

14

Table 2: Summary of Issues Supporting Formalised System Development

Methodologies

 Conceptual basis:

 Based on scientific paradigm

 Development process more amenable to project management
and control, thus minimising risk and uncertainty

 Economic rationale: skill specialisation and elimination of
irrational activities

 Epistemological rationale: provide a structural framework
for the acquisition of knowledge

 Pressures for increased formalism:

 Desirability of ISO-certification

 Government SDM standards:
 SSADM (UK, Ireland, Malta, Hong Kong, Israel)
 Dafne (Italy)
 Merise (France)
 NIAM (Netherlands)
 Department of Defense Std. 2167 (US)

 Software Capability Evaluation programme

 Growing interest in formal mathematical methods for systems development e.g. VDM,
Gist, PAISLey, Z

15

Table 3: Summary of Issues Against Formalised System Development Methodologies

 Definitional problems:

 Problems as to what exactly constitutes a SDM

 Differing philosophies, objectives and areas of focus for
different SDMs. Major differences between some methodologies
and trivial differences between others

 Generalisation from limited practical experience

 Inadequacies of scientific paradigm:

 Systems development is not actually a rational process but most
methodologies view it as rational

 Over-emphasis on technical aspects at the expense of softer
social aspects

 Shortcomings of the waterfall life-cycle:

 Often applied in a dogmatic and ironclad manner

 Linear sequential progression not an adequate reflection of the
reality of systems development

 Requirements cannot typically be fully specified in advance

 Goal displacement:

 Slavish adherence to SDM at the expense of actual systems
development

 Assumption that SDMs are universally applicable:

 Failure to recognise contingency factors and the uniqueness of every
development situation

 Inadequate recognition of people factors:

 SDMs do not cater for factors critical to successful development,
such as individual creativity and intuition, or learning over time

16

