
Customising agile methods to software

practices at Intel Shannon

Brian Fitzgerald1,
Gerard Hartnett2 and
Kieran Conboy3

1University of Limerick, Castletroy, Limerick,

Ireland; 2Intel Communications Europe, Shannon
Industrial Estate, Shannon, Co.Clare, Ireland;
3Department of Accountancy and Finance. NUI

Galway, Galway, Ireland

Correspondence:
Brian Fitzgerald, University of Limerick,
Ireland.
Tel: þ353 61 202720; Fax: þ353 61 202734;
E-mail: bf@ul.ie

Received: 18 May 2005
Revised: 19 June 2005
Accepted: 9 January 2006

Abstract
Tailoring of methods is commonplace in the vast majority of software

development projects and organisations. However, there is not much known

about the tailoring and engineering of agile methods, or about how these
methods can be used to complement each other. This study investigated

tailoring of the agile methods, eXtreme programming (XP) and Scrum, at Intel

Shannon, and involved experienced software engineers who continuously
monitored and reflected on these methods over a 3-year period. The study

shows that agile methods may individually be incomplete in supporting the

overall development process, but XP and Scrum complement each other well,
with XP providing support for technical aspects and Scrum providing support

for project planning and tracking. The principles of XP and Scrum were

carefully selected (only six of the 12 XP key practices were implemented, for

example) and tailored to suit the needs of the development environment at
Intel Shannon. Thus, the study refutes the suggestion that agile methods are

not divisible or individually selectable but achieve their benefits through the

synergistic combination of individual agile practices; rather, this study shows
that an a la carte selection and tailoring of practices can work very well. In the

case of Scrum, some local tailoring has led to a very committed usage by

developers, in contrast to many development methods whose usage is limited
despite being decreed mandatory by management. The agile practices that

were applied did lead to significant benefits, including reductions in code

defect density by a factor of 7. Projects of 6-month and 1-year duration have

been delivered ahead of schedule, which bodes well for future ability to
accurately plan development projects.

European Journal of Information Systems (2006) 15, 197–210.

doi:10.1057/palgrave.ejis.3000605

Keywords: agile methods; software development; XP; Scrum; method tailoring; method
engineering; Intel

Introduction
Agile methods are perhaps the latest initiative in the software field to be
posited as the ‘silver bullet’ to help address the key problems in software
development, namely that software takes too long to develop, costs too
much to develop, and does not work very well when eventually delivered.
Much has been made of the demand for flexible development methods
(Lee & Xia, 2005) that can handle constant change and evolving
complexity (Lycett & Paul, 1999). Agile methods are suggested to be ‘just
enough’ method as they seek to avoid prescribing cumbersome and time-
consuming processes that add little value to the software product and
actually elongate the development process (Highsmith, 1999; Fowler &
Highsmith, 2001). While the principles underpinning agile methods are
generally accepted as neither new nor radical paradigm shifts in software

European Journal of Information Systems (2006) 15, 197–210

& 2006 Operational Research Society Ltd. All rights reserved 0960-085X/06 $30.00

www.palgrave-journals.com/ejis

development, there is some debate as to how these
principles are applied in practice. Some argue that parts
of these agile methods can be cherry-picked, deviated and
replaced (McBreen, 2003), while others suggest that the
overall combination of individual agile practices achieves
a synergistic effect which addresses the inherent pro-
blems in software development (Schwaber & Beedle,
2002). These advocates argue that these methods cannot
be applied a la carte, but must be applied in their entirety
to achieve the desired effect.

A related stream of research has focused on the
tailoring of software methods to the actual needs of the
development context. Factors such as organisational
issues (Doherty & King, 2001), distributed teams (Sarker
& Sahay, 2004), or the existence of legacy systems (Chae
& Scott Poole, 2005) often require the use of a different
method, or at least changes to the existing method. This
has taken two forms principally – method engineering
and contingency factor approaches. In the case of
method engineering, a meta-method process is followed
whereby methods are precisely constructed from existing
discrete pre-defined and pre-tested method ‘fragments
(Kumar & Welke, 1992; Harmesen et al., 1994; Hidding,
1996). The contingency factor research suggests that
specific features of the development context should be
used to select an appropriate method from a portfolio of
methods (Iivari, 1989; Avison & Wood-Harper, 1991).
One marked feature of both the contingency factor and
method engineering research is that it has been largely
deductive in nature, employing theoretical and concep-
tual arguments to suggest how methods should be
tailored or constructed. Very little is available in terms
of the practical application of these concepts in real
software development practice. In the software field,
practice is often ahead of research, and thus much can be
learned from examining good practice. The application of
agile methods in Intel Shannon is especially pertinent as
it represents an industrial product development setting,
where experienced software engineers adopted an a la
carte approach to XP and Scrum. Many of the reported
benefits of XP to date have arisen from studies in
academic university environments (e.g. Muller & Tichy,
2001; Hedin et al., 2003), and therefore lessons learned
from its application in a real software development
context are invaluable, as few such studies have been
published.

Given the above, we were interested in investigating
the use and tailoring of agile methods in actual practice.
Specifically, our research objective was to investigate:

� How agile methods are used and tailored in practice
� How agile methods can be combined to address the

overall software process

We chose an in-depth case study to investigate this.
The site in which we carried out our investigation was
Intel Shannon. Our findings suggest agile methods can
make a significant contribution to quality in terms of
reduced defect density and delivery within schedule.

Also, these methods are ‘developer friendly’ and com-
mitted usage has grown bottom-up among developers
rather than usage mandated by management. XP and
Scrum were found to be very complementary with XP
particularly useful for the technical development stages,
whereas Scrum provided the necessary overall project
management process. Also, both methods were exten-
sively tailored to meet the precise needs of the develop-
ment context, reinforcing the view that all methods need
to be tailored for successful deployment.

The paper is laid out as follows. In the next section,
previous research on agile methods is presented, in
particular studies to do with XP and Scrum, the two
methods in use in Intel Shannon. Also, research on
method tailoring is presented. Following this, the
research method adopted for the study is presented.
Then, details of the use and tailoring of XP and Scrum at
Intel Shannon are presented. Finally, the theoretical and
practical implications of the study are discussed.

Agile methods and method tailoring
Empirical research shows that method use in software
practice is rather limited, and those developers who do
use methods tend to use different combinations and parts
of methods rather than following all the steps required by
a particular method (Fitzgerald, 1996; Hidding, 1996). In
fact, an empirical study by Fitzgerald (2000) found that
only 6% of developers rigorously adhere to methods.
Much research focused on the inability of methods to
handle people factors (Boehm, 1984; Brooks, 1987; Glass,
1991). Fowler (2000) claims that the bureaucratic nature
of methods has slowed development to the extent that
developers are forced to abandon them. Fitzgerald (1994)
refers to ‘goal displacement’ whereby developers become
preoccupied with following the method and lose sight of
the fact that their goal is to develop a software product.

The formation of the Agile Alliance in 2001 and the
publication of the Agile Manifesto (Fowler & Highsmith,
2001) formally introduced agility to the field of software
development. Those involved sought to ‘restore cred-
ibility to the word method’ within the context of
software development (Fowler & Highsmith, 2001). The
manifesto conveyed an industry-led vision for a profound
shift in the conventional software development para-
digm. Agile methods have been defined as ‘a collection
of philosophies that enable IT professionals to work
together effectively’ (Ambler, 2002). Such methods have
been described as ‘young and fast-moving’ (Constantine,
2001), that ‘compromise between no process and too
much process’ (Fowler & Highsmith, 2001) and ‘that are
flexible enough to smoothly adapt to changes in
requirements and delivery schedules’ (Aoyama, 1997;
Jacobson, 2002). They ‘mirror today’s turbulent business
and technology environment’ (Highsmith & Cockburn,
2001) and are related to what Lee & Xia (2005) refer to as
flexible systems development. They ‘dispense with all but
the essentials’ (Boehm, 2002) and do ‘not do anything
that is a waste of time’ (Highsmith, 1999) and Cockburn

Customising agile methods to software practices Brian Fitzgerald et al198

European Journal of Information Systems

(2001) adopts a narrower meaning of an agile method, by
suggesting that alternatives to agile development arise ‘as
soon as the development team focus their attention on
rigorous, predictable, repeatable, defect-free, traceable or
even fun software development’.

It is important to emphasise that agile approaches are
not anti-method, rather they operate on the lean
principle of ‘barely sufficient methodology’ (Highsmith,
1999). The change in emphasis from the traditional
approaches is summarised in the following value-trade-
offs (Fowler & Highsmith, 2001):

� Individuals and interactions over processes and tools.
� Working software over comprehensive documentation.
� Customer collaboration over contract negotiation.
� Responding to change over following a plan

Advocates of the agile approaches recognise that both
sides of these value statements are relevant to software
development. However, they choose to emphasise the
first part of each statement as more important than
the second part. The overall principles underpinning the
agile approaches are summarised in the agile manifesto
(Fowler & Highsmith, 2001).

Many different methods have been labelled as agile,
such as eXtreme Programming (XP) (Beck, 1999), Dynamic
Systems Development Method (DSDM) (Stapleton, 1997);
Scrum (Schwaber & Beedle, 2002); Crystal (Cockburn,
2001); Agile modelling (Ambler, 2002); Feature
Driven Design (Coad et al., 1999); Lean Programming
(Poppendieck, 2001), and perhaps even the Rational
Unified Process (RUP) (Kruchten, 2000). Two of the
most popular and widely adopted agile methods are XP
and Scrum. These were the basis of our investigation
in this study, and an overview of both methods is
provided next.

Overview of the XP and Scrum methods
As already discussed, two of the most popular and widely
used agile methods are XP and Scrum, and both of
these are in active use at Intel Shannon. Hence, a brief
background summary of each of these approaches is
provided here.

eXtreme Programming (XP) XP has been pioneered by
Kent Beck, and has its origins in a project to develop an
internal payroll system at Chrysler in 1996–1997. It is
comprehensively described by Beck (2000), where he
describes it as ‘a light-weight methodology for small-to-
medium-sized teams developing software in the face of
vague or rapidly-changing requirements’. XP comprises
five key values: communication, feedback, simplicity,
courage and respect. These are underpinned by 12 key
practices, summarised in Table 1. The eXtreme Program-
ming (XP) approach explicitly acknowledges that it is not
a magic set of revolutionary new development techni-
ques; rather, it is a set of tried and trusted principles that
are well-established as part of the conventional wisdom

of software engineering, but which are taken to an
extreme level – hence the name eXtreme Programming.

Scrum Scrum (Schwaber & Beedle, 2002) is a simple low
overhead process for managing and tracking software
development. It attempts to control this ‘chaordic’
process using a project management framework that
involves requirements gathering, design and program-
ming. While it is very much influenced by Boehm’s
(1988) spiral model, it has its software development
origins in a project by Jeff Sutherland at the Easel
Corporation in 1993 where it was used in the develop-
ment of an OO analysis and design tool. It’s origins lie
outside the field of software development altogether,
in Japan in the mid-1980s where an adaptive, quick, self-
organising product development process was employed
(Abrahamsson et al., 2002). Scrum differs from traditional
approaches in that it assumes that analysis, design and
development processes are largely unpredictable. At
its heart, Scrum comprises a number of stages which,
building on its underpinning metaphor of a rugby scrum,
also follow a sporting theme.

Sprints are nonlinear and flexible. Where available,
explicit process knowledge is used; otherwise tacit knowl-
edge and trial and error is used to build process knowl-
edge. Sprints are used to evolve the final product. The
project is open to the environment until the Closure
phase. The deliverable can be changed at any time during

Table 1 Key practices of XP (adapted from (Beck, 2000)

The planning game: A quick determination of the scope of the next

software release, based on a combination of business priorities and

technical estimates. It is accepted that this plan will probably

change.

Small releases: Put a simple system into production quickly, then

release new versions on a very short cycle.

Metaphor: Guide all development with a simple shared story of how

the whole system works.

Simple design: The system should be designed as simply as possible at

any given moment in time.

Testing: Programmers continually write tests, which must be run

flawlessly for development to proceed. Customers write function

tests to demonstrate the features implemented.

Refactoring: Programmers restructure the system, without removing

functionality, to improve non-functional aspects (e.g. duplication of

code, simplicity, flexibility).

Pair-programming: All production code is written by two program-

mers at one machine.

Collective ownership: Anyone can change any code anywhere in the

system at any time.

Continuous integration: Integrate and build the system every time a

task is completed – this may be many times per day.

40-H week: Work no more than 40 h per week as a rule.

On-site customers: Include an actual user on the team, available

full-time to answer questions.

Coding standards: Adherence to coding rules that emphasise

communication via program code.

Customising agile methods to software practices Brian Fitzgerald et al 199

European Journal of Information Systems

the Planning and Sprint phases of the project. The project
remains open to environmental complexity, including
competitive, time, quality, and financial pressures,
throughout these phases (see Table 2).

Despite the claim by its proponents that Scrum has
been used on ‘thousands of Scrum projects’ (Schwaber &
Beedle, 2002), there have been quite a few accounts of the
use of Scrum in real world projects (Abrahamsson et al.,
2003).

Method tailoring
Research to date on method tailoring has by and large
tended to fall into two streams – contingency factor
approaches and method engineering.

Contingency factor research (Iivari, 1989; Avison &
Wood-Harper, 1991) on software development methods
is typically premised on the notion that specific features
of the development context are mapped to the selection
of an appropriate development method from a portfolio
of methods. However, one of the fundamental problems
with the contingency approach in practice is that an
organisation is expected to have a range of methods
available to developers who, presumed to be fully au fait
with each method, choose the most appropriate one
depending on the contingencies of the situation. Close
familiarity with even one method is not all that common
in practice among developers; thus, achieving compe-
tence with several is not a realistic expectation. Also, the
cost of sourcing and training for each method would
be prohibitive. Some of the later contingency factors
research (Iivari, 1989; Avison & Wood-Harper, 1991)
recognised this fundamental flaw, and suggested a more
pragmatic view, arguing that contingency be built-in as a

feature of the method itself. Thus, rather than suggesting
a repertoire of methods, the encompassing framework of
the method is expected to cover all situations. However,
again a fundamental flaw is the assumption that existing
methods adequately cover all contingencies of any given
development situation.

Method engineering research (Kumar & Welke, 1992;
Harmesen et al., 1994) acknowledges the advantage of
software development methods in their provision of a
disciplined standard for development, but recognises that
flexibility is necessary so that methods can be tuned to
meet specific project needs. This research argues for a
meta-method process whereby methods are precisely
constructed from existing discrete pre-defined and pre-
tested method fragments.

Among the potential problems with method engineer-
ing is the fact that a repository that can store method
components is required. The experiences of CASE would
suggest that electronic support for such an initiative
could be problematic. Also, the meta-method process
suggests new software development roles – a method
engineer, for example – and this may not be welcome in
many organisations.

Agile method tailoring
While XP is acknowledged as not being a ‘one size fits all’
approach suited to every development context
(Cockburn, 2001; Stephens & Rosenberg, 2003), this is not
at all surprising, as ‘the idea of a one best way or set of best
practices are holdovers from scientific management, and
have no place in software development’ (McBreen, 2003).
For example, Bowers et al (2002) illustrate the need to
tailor XP to suit large-scale projects, and support the
claims of Drobka et al (2004) that the method also needs
to be adjusted to suit projects that are deemed mission
critical. Stotts et al (2003) study the adjustments required
to traditional pair programming to cater for a distributed
environment. Some studies have advocated an a la carte
approach such as ‘XP Lite’, where an existing agile
method is ‘defanged’ (Stephens & Rosenberg, 2003),
However, breaking a method apart, and only using
certain principles contravenes the claim of synergy that
the whole of the method is greater than the sum of its
parts, and that the benefits are achieved through the
combination of all practices (Jeffries et al., 2000; Schwaber
& Beedle, 2002). An important aspect of XP is that
several of the practices overlap to some extent and thus
serve to complement and reinforce each other. Refactor-
ing, simple design, collective ownership and coding
standards provide an example of such inter-dependencies
(Beck, 1999). As Schwaber & Beedle (2002) put it, ‘XP
values and their underlying practices and techniques are
not divisible and individually selectable; they form a
coherent, whole process’.

A marked feature of both the contingency and method
engineering research is that they are largely deductive in
nature and employ theoretical and conceptual arguments
to support how methods should be tailored or con-

Table 2 Key practices of Scrum (adapted from
(Schwaber and Beedle, 2002)

Pre-game phase

Planning: The definition of a new release of the system based on the

currently known backlog of required modifications, along with an

estimate of its schedule and cost. If a new system is being developed,

this phase consists of both conceptualisation and analysis. If an

existing system is being enhanced, this phase consists of limited

analysis.

Architecture: This phase includes system architecture modification

and high-level design as to how the backlog items will be

implemented.

Main game phase

Sprints: This involves development of new release functionality, with

constant respect to the variables of time, requirements, quality, cost,

and competition. Interaction with these variables defines the end of

this phase. There are multiple, iterative development sprints, or

cycles, that are used to evolve the system.

Post-game phase

Closure: Here the focus is on preparation for release, including final

documentation, pre-release staged testing, and release.

Customising agile methods to software practices Brian Fitzgerald et al200

European Journal of Information Systems

structed. Very little is available in terms of practical
applications of these ideas in real development practice.
Fitzgerald et al. (2003) report on a sophisticated approach
to method tailoring in Motorola whereby an overarching
method was first established within the company, albeit
tailored at a macro-level to the general needs of the
company. Subsequently, for each individual development
project, some precise micro-level tailoring of develop-
ment practices at a finer level of granularity was
conducted so as to suit the actual demands of the
particular project context.

Research approach

Background to the case
Intel Shannon is based in the west of Ireland and is part
of Intel’s Infrastructure Processor Division. The main
Intel plant in Ireland near Dublin employs 4200 people.
The Intel Shannon organisation employs 125 people, and
about 90 are involved in engineering, software develop-
ment and silicon design. The products under develop-
ment are network processors for networking equipment,
typically for SMEs, the small office/home, and 3G wireless
markets. For these products, requirements analysis is
typically done in the US, and the software and silicon
design is done in Shannon. Intel Shannon has seen
significant growth in their workforce over the past few
years. The study at Intel Shannon is based on the software
development of two product families, the IXP2XX and
IXP4XX network processors. During this study, the
IXP2XX project involved approximately 15 engineers
split into four teams across three sites, and had a
development duration of 18 months. The IXP4XX
product consisted of five teams and over 30 engineers,
across two sites, with a development duration of 24
months.

In terms of software development, Intel Shannon has
been formally assessed at Level 2 on the Capability
Maturity Model (CMM). While this has led to some
discipline in the development process, the rapid time-to-
market pressures has led Intel Shannon to consider agile
methods. Further, they are a company who embrace
innovation and seek to rigorously assess new techniques
and methods that could meet their market needs. Intel
Shannon have been deploying a range of agile methods
over the past 5 years, principally two flavours of agile
methods, XP for the technical engineering aspects of
software development, and Scrum for the project plan-
ning and tracking.

While the move to CMM certification was driven more
as a top-down mandate within the organisation, in
marked contrast, Scrum and XP were introduced at a
grassroots engineering level as optional techniques. As
such, their adoption has grown organically over time.
They were not compulsory as the techniques were being
introduced in parallel with CMM implementation.
Indeed, contrary to the conventional wisdom, agile
methods and CMM were found to be quite compatible.

Research method
The objective of this research was not simply to examine
the use of XP and Scrum in practice, but to gain a better
understanding of how these methods were fragmented
and tailored, and also how they might be combined to
complement each other.

We decided to adopt an interpretive, exploratory research
methodology for the study. An interpretivist stance is
considered appropriate in new and evolving fields such as
IS (Walsham, 1995a, b). Within this field, agile methods
have only recently attracted the attention of researchers,
and very little is currently known about how they are
used in practice. Also, little or no research has focused
on how agile methods are tailored, or how they may
complement each other. Interpretivist research is also
considered most appropriate when it is necessary to
consider the context of the study and the ‘often
complicated relationship between people, ideas and
institutions’ (Travers, 2001). Such a focus is necessary
given that agile methods in Intel Shannon were strongly
championed by the grassroots software developer com-
munity, and agile methods themselves ‘value people over
processes and tools’ (Fowler & Highsmith, 2001).

The case study approach (Benbasat et al., 1987; Lee,
1989; Yin, 2003) was adopted as it is considered
appropriate where the research has a descriptive and
exploratory focus (Marshall & Rossman, 1989). Case
studies can be very valuable in generating an under-
standing of reality (Yin, 2003), allowing authentic
representation of the situation ‘in its own terms’
(Hammersley & Gomm, 2000). Thus, an appropriate
approach is an in-depth study which a single case
provides, what has been termed the ‘revelatory case’
(Yin, 2003). A single case strategy is also strongly
recommended by Mintzberg (1979).

One of the often-cited limitations of the case study
method is its lack of generalisability, as the data collected
is often specific to the particular situation at a particular
point in time. However; Lee & Baskerville (2003) identify
a fundamental and long-standing problem with the type
of generalisation based on the type of statistical sampling
frequently sought in research, namely the problem of
attempting to generalise to any other settings beyond
the current one. Following this conventional model,
researchers have typically suggested increasing sample
size or number of case study organisations, but Basker-
ville and Lee argue cogently for the ultimate futility of
this flawed strategy. Furthermore, the ‘thick descriptions’
(Yin, 2003) provided by the case study were considered
much more valuable than generalisability of results. The
rich findings generated from this study may then be used
to generate hypotheses suitable for testing in a more
quantitative fashion.

Data collection involved a series of formal and informal
personal interviews, conducted over a 2-year period with
the project managers and key staff responsible for agile
deployment at Intel Shannon. In all, interviews were
conducted with 12 different individuals, with some

Customising agile methods to software practices Brian Fitzgerald et al 201

European Journal of Information Systems

interviewed on several occasions. This was facilitated by
the fact that the Intel Shannon site is close to the
universities where two of the authors work. Also, Intel
Shannon has a very close relationship with both
universities, attending workshops and speaking at semi-
nars. In turn, access by researchers to the Intel Shannon
development teams has been very open. Interviews were
generally of 1–2-h duration, and informal interviews were
used to clarify and refine issues as they emerged. Inter-
views were used to encourage the interviewee to relate
experiences and attitudes relevant to the research
problem (Walker, 1988), A reflexive approach (Silverman,
1998), was deliberately allowed in the interview phase
adopted in this study. This facilitates ‘controlled oppor-
tunism’ (Eisenhardt, 1989), and has been identified as
important in exploratory research as it facilitates refocus-
ing as the research progresses, in that responses to certain
questions can stimulate new awareness and interest in
particular issues which may then require additional
probing (Trauth & O’Connor, 1991). Thus, we did not
use a structured interview guide. We were interested in
the usage of agile methods, and the nature of the use or
non-use of each of the methods. The individual compo-
nents of both methods served as a coding structure with
which to categorise and analyse interview findings. Also,
an e-mail survey of the developers and project managers
working across the projects was used to gain extra details
on the usage of XP. In the case of Scrum, the post-Scrum
workshops for individual projects were also a source of a
great deal of information. Defect densities were calcu-
lated by matching queries of the change management
system with scripts run on the source code to calculate
non-commented lines of code. Accuracy to development
schedule was calculated by comparing baseline schedule
dates with actual release dates.

Although the study did not focus on the comparison of
opinions over time, this study adhered to recognised best
practices regarding any longitudinal research, as the inter-
views were conducted over a reasonably long period of
time, For example, Intel Shannon employees interviewed
at an early stage in the study were contacted again to
offer any updated or refined information, in order to be
consistent with those interviewed later in the process, as
suggested by (Silverman, 1998).

The use and tailoring of XP
Intel Shannon has been using XP for 5 years. However,
even though they have been committed users of XP,
they have been quite pragmatic in choosing only those
aspects of XP which they perceived as relevant to the
needs of their development context. The XP practices
that have been deployed, however, have been carefully
monitored and the impact measured. Only six of the
12 XP practices have been implemented. These practices
were Pair-Programming, Testing, Refactoring, Simple
Design, Coding Standards and Collective Ownership.
The unused practices were the Planning Game, Small
Releases, Continuous Integration, 4-Hour Week, On-Site

Customers and Metaphor. Table 3 summarises this usage
pattern, which is discussed in more detail below.

Pair-programming
Pair-Programming is perhaps the best known of the XP
practices, with generally positive reports on its usage,
although Muller & Tichy (2001) suggest that it decreases
overall productivity. While most of the other XP practices
have been applied across all of the individual software
teams at Intel Shannon, Pair-Programming has been
selectively applied. Most teams consist of between two
and six software engineers with a wide range of
experience. Pair Programming was applied initially by
two teams on two components of the software for the
IXP2XX network processor. On the later IXP4XX network
processor it was again employed by two teams.

Pair-Programming was perceived as having a number
of significant advantages at Intel Shannon. Firstly, it
was estimated that the required code quality level was
achieved earlier. On the IXP2XX project, the pair-
programmed components had the lowest defect density
in the whole product. The defect densities were a factor of
7 below the component with the highest density. On the
IXP4XX project, two of the three Intel Shannon teams
used Pair-Programming. One of the teams achieved

Table 3 Usage of XP practices in Intel

XP practices in use

Pair-programming: Widely used at particular stages in the develop-

ment process. Stages of the development process where pair

programming does not work well have been identified. Found to

facilitate the collective ownership practice.

Testing: Widely used in unit-test code strategy. Helped developers

gain better understanding of required functionality.

Refactoring: Done early as it was found to eliminate bugs. Also

facilitated continuous simple design.

Simple design: Design done on whiteboard for each block of code,

thus allowing design to emerge in parallel with code implementa-

tion.

Collective ownership: Useful as it ensured several project team

members could maintain code if any individual too busy. However,

confined to single teams and not practiced across teams.

Coding standards: Already a strong feature of development

environment.

Unused XP practices

The planning game: This is largely accomplished by Scrum.

Small releases: Not practical as software releases are tied to silicon

availability.

Continuous integration: Unused due to the need for external test

equipment and the complexity of the software.

40-H week: Not achievable where workers collaborate across time

zones (Ireland and US).

On-site customers: Unused as in early conceptual stages of

development there are no specific customers.

Metaphor: Unused, although some correspondence between silicon

design interfaces and software API functionality.

Customising agile methods to software practices Brian Fitzgerald et al202

European Journal of Information Systems

zero-defect quality. The team with the highest defect
density was the team that did not. The three teams all
had similar experience profiles with Pair-Programming,
developers did not get stuck wondering what to do next.
If one person was unsure, the other probably did know.
Developers also believed that they learned quite a lot
from each other and that they remained more focused on
the job at hand, and less likely to go off on a tangent.

The essential nature of Pair-Programming where one
person is effectively looking over the other’s shoulder
meant that minor errors were caught early ,saving
considerable debugging time. Also, it was useful for
testing and debugging, as a fresh viewpoint could spot
obvious flaws that were not obvious to the pair partner.
The overall process also ensured that more than one
developer gained a deep understanding of the design and
code, thus facilitating collective ownership (discussed
below). Developers suggested that they had more fun,
and found the work more interesting. They also seemed
more enthusiastic about their work.

However, there were a number of problematic aspects
associated with the use of Pair-Programming also. For
example, it was found to be unsuitable for simple or well-
understood problems, which could be fixed as quickly as
a single developer could type. In a similar vein, when
doing lots of small changes, it tended to get frustrating.
Some developers found Pair-Programming could break
their flow of concentration as they needed to pause to
communicate non-obvious ideas to the pair partner.
Indeed, some developers expressed the view that it was
difficult to reflect and concentrate with someone by their
side.

To overcome the limitations described, Intel Shannon
have documented a number of lessons which will guide
their future use of Pair-Programming:

� Some basic rules of pair working etiquette are required,
for example, no keyboard wrestling.

� Consideration needs to be given to neighbours to keep
background noise to a minimum.

� Use large fonts.
� Set clear objectives at the start of a programming

session.
� Planning and coordination may be necessary to

prioritise programming over other activities (e.g. helping
other engineers, phone calls, meetings), otherwise
both people may not be free simultaneously.

� Pair-Programming was not seen as valuable during
sustaining activities on the project when the amount
of coding is not as significant.

Testing
Intel Shannon also implemented a test-code develop-
ment strategy, that is, writing the unit-test code while
writing production code. They found this had a number
of advantages. It set a direction for the immediate
development, namely to get the test case working. It also
helped developers get a better understanding of what

functionality was required of the software from a client
point of view. The unit-tests are also implemented as part
of a regression test suite and all component unit tests are
run on the code repository nightly. Integration tests are
also developed to test the individual components in
concert and ‘smoke tests’ are run daily with external test
equipment in the weeks leading up to a release.

Refactoring
Refactoring was another XP technique that was quite
widely used at Intel Shannon. They found it worked best
when it was done early, as it eliminated a lot of bugs,
which would have taken up a lot of debugging time
otherwise. Refactoring also became akin to a continuous
design activity, which is discussed next.

Simple design
In this case, design was done on a whiteboard before
each block of code was written. As a result, the design
document emerged on an ongoing basis in parallel with
the code implementation. Quite significantly, however,
they have not subscribed to the XP concept of the code
being the design, as documentation is an integral part
of the product deliverable at Intel Shannon. Simplicity
increasingly became the guiding principle, and over time,
developers stopped trying to second-guess the client code
and just implemented the requirements. As already
mentioned, this practice was very closely linked to
refactoring.

Collective ownership
This practice led to a number of benefits. Firstly, it
ensured that several members of the project team knew
the code well enough to make changes, and if one person
was busy, another person could make the requested
change. Also, in the Intel Shannon context, changes in
team composition were quite common. In the past, this
meant that developers had to choose between bringing
any code they wrote with them and continuing to
maintain it, or spending time teaching the code to
someone else and handing over responsibility. Collective
Ownership allowed management more flexibility as it
resulted in teams being able to maintain the code base
since several of the original members would know it well
enough to maintain it.

However, Intel Shannon found that Collective Owner-
ship was only appropriate on a single-team basis. Code
ownership across multiple teams was not applied. The
software engineering team on the whole product could be
as many as 30 engineers and the team felt collective
ownership could not scale to this wide a population.

Coding standards
Intel Shannon defined a C-coding standard early in the
project and referred to it extensively during coding and
code inspections. Coding Standards were already a very
strong feature of their development environment prior to
the application of XP.

Customising agile methods to software practices Brian Fitzgerald et al 203

European Journal of Information Systems

Unused XP practices
The Planning Game was not used as many aspects of
planning are covered by the Scrum technique, discussed
later. From a business priority perspective a product-
marketing team have the responsibility for deciding
feature priorities. They are in a separate organisation
most of whom are not physically co-located. In future,
however, they intend to use some prioritisation aspects of
the Planning Game.

The XP practice of Small Releases is not feasible early
in the product schedule as software releases are tied to
silicon availability. Once silicon is available the team
typically delivers minor releases every 4 to 6 weeks and
major releases every two quarters.

While Continuous Integration is practiced for each
component, given the complexity of the overall software
and the need for external test equipment, full system
integration is done only in the fortnight leading up to a
release.

The 40-H Week was seen as a great aspiration but it was
not consistently achievable in the Intel Shannon deve-
lopment context, where the discrepancy in time zones
between Europe and the US serves to extend working
hours.

On-Site Customers are not available. These projects
are tied to the design of silicon and in many cases do
not have specific customers during the early conceptual
stages. The product marketing group act as a customer
proxy, prioritizing features based on potential revenue.

Metaphor was not explicitly used, but at a high level
the software components do correspond to the interfaces
on the silicon and have common patterns of functions on
the APIs.

The use and tailoring of scrum
Scrum has been used for 3 years at Intel Shannon
although some of the engineers had used it for almost
5 years in their previous organisations. Scrum has really
only been documented in book form since 2002
(Schwaber & Beedle, 2002). Up to then the technique
was documented on a number of websites. The Intel team
also employed a number of techniques from ‘Episodes’
(Cunningham, 1995). Table 4 summarises the tailoring of
Scrum, and this is discussed further below.

Scrum was initially piloted by one team and its use has
grown organically to the extent that it now is used by
most of the teams in Intel Shannon. They believe the key
reason for this enthusiastic embrace of the technique is
down to one of the customisations this initial team made.
The daily Scrum meeting took place around a board
covered with yellow post-it notes. The team recorded
tasks for the 24-h period on post-its. This made Scrum
very visible in the organisation, and curiosity from other
teams helped the initial spread of the technique. Figure 1
below illustrates a sample meeting record with Post-Its
attached.

Team members arrive at the daily meeting with their
new Post-Its for the next 24 h. The Post-Its in their named

area are the tasks that were committed to at the last
meeting. If a task is too big for the next 24 h, they write a
subset of it on a new Post-It. During the Scrum meeting
the team members move completed tasks into the ‘done’
area. Moving the Post-Its around helps achieve a shared
group visualisation of the tasks and project progress.

They have also experimented with other innovative
practices. For example, one team member took notes and
then published the tasks on a web-page. However, they
found this was a significant overhead for that team. They
also tried running the meeting with each individual
taking notes in a personal notebook, but this reduced the
shared group visualisation of the project. Overall they
found the shared Post-It board the most useful.

The Post-Its encourage people to prepare more thor-
oughly in advance for the daily meeting. Continuous
preparation happens as developers stick new Post-Its to
their PC screens during their work in the interim between
daily meetings.

Until recently all teams were geographically co-located
so the simple low-tech Post-It technique has worked very
well. Interestingly, they now have one distributed team
that has commenced using the technique using a shared
spreadsheet and networked meeting software. It is too
early to report on the results of this project, but early
indications are promising, thus indicating that some
agile methods may be more applicable to distributed
development than has been suggested up to now
(McBreen, 2003).

Scrum planning
Intel Shannon has made some modifications to the
planning process also. They use two planning stages,
one at the start of each sprint and one at the start of the
project.

Planning is kept simple. There is no complex Gantt
chart with complex inter-dependencies between tasks.
The overall plan is a series of sprints (see Figure 2).
Internal or external milestones can be lined up with

Table 4 Usage of Scrum practices in Intel

Pre-game phase

Planning: Planning was simplified, there was no analysis of task inter-

dependencies, plans were verified by an external team. Time-boxing

was not used and contingency plans were put in place, an item not

usually included in Scrum. Two planning stages were used instead of

one.

Architecture: Much of this was pre-determined by silicon design.

Main game phase

Sprints: Major tasks were split across sprints instead of being

contained within them. Tasks were published online.

Post-game phase

Closure: Modified to include a wrap-up session and ‘lessons learned’

report.

Customising agile methods to software practices Brian Fitzgerald et al204

European Journal of Information Systems

Sprint completions, but the dependencies between the
tasks within the sprint are not worked out in advance.

Each team lead does a plan outlining all of the sprints
to the end of the project. Initial meetings are conducted
by the engineers to get high-level estimates that can be
allocated and distributed across a number of sprints. In
one of the projects the wide-band Delphi technique was
used to generate the estimates (Linstone & Turoff, 1975).
Dependencies between teams are made between end-of-
sprint milestones.

In terms of deliverables, the team lead provides a list of
sprint milestones and the contents of each sprint to the
overall project lead. Intel Shannon do not use sprint time
boxing which is part of some implementations of Scrum.

The high-level tasks are split to distribute them across
sprints. They then continue to distribute and split tasks
until the duration of each sprint is at most 20 working
days. Contingency is built into the plan and effort
estimates are done based on ideal engineering effort.
The contingency factor is tuned as the project progresses.

Scrum sprints
At the start of each sprint the team decides which tasks
are going to be done in the next sprint. They look at the
start of project sprint plan and look at any new backlog
items that may have come up during the last sprint. Tasks
are allocated to individuals to spread the load. The sprint

John Paul George Ringo

DoneCurrent Backlog Backlog

Complete
HPI EAS

PDT
Meeting

Sample
Interface Code

Refactor
OS Adaptor
Again!!!

Design
PSM/Hwsv
interface

Update Plan

Write meeting
minutes

Read 4 chapters
of USB book

assesment

SW PIP out for
review

SW SAS
complete

Ethernet Tx
design scenario

SAS
scenarios

written SW org
decided

HW
milestones

in plan AAL EAS
section
written

Complete
assembler test

scripts

USB impact

Figure 1 Sample Scrum daily meeting post-it record.

effective number of engineers 2.6 2.6 2.7 2.8 2.8 2.8
Sprint Tasks Sprint 1 Sprint 2 Sprint 3 Sprint 4 Sprint 5 Sprint 6
Atmd.HLD.workshops 12.0 12.0
Aal5/Aal0/Aal2.workshops 2.0 2.0
Fpath 64.5 64.5
QMgr 43.5 43.5
Atmd 111.5 111.5
Aal5Acc.FuncSpec.Draft/Review 10.0 10.0
Aal5Acc.DesignSpec 7.0 7.0
Aal5Acc.Code 6.0 6.0
Aal5Codelet.Spec 7.5 7.5
Aal5Codelet.Code 7.0 7.0
Total 271.0

Fixed Overhead
Holidays.Public 4.0 4.0
Holidays.Vacation 45.0 45.0
Training 4.0 4.0
Total

271 0 0 0 0 0 0

53.053 0
0 0

0 0
0 0

0 0
0 0

0

Baseline unassigned

Figure 2 Scrum planning.

Customising agile methods to software practices Brian Fitzgerald et al 205

European Journal of Information Systems

protects the team from the environment surrounding it
for a meaningful amount of time.

Sprint closure
At the end of the sprint the team lead writes a wrap-up
report, listing the tasks completed including extra tasks
that that were not part of the original sprint plan. The
report will also contain ‘lessons learned’ and a measure-
ment of the actual effort expended in the sprint vs the
estimate at the start-of-project. Other end-of-sprint
deliverables could include a demo, a project review or a
release.

As regards Scrum, project teams have had excellent
success delivering projects on time and within budget. An
early project of 5.5 months duration with four team
members delivered their final release within 3 days of
the original plan. The IXP4XX release 1.0 software was
delivered 1 week ahead of schedule on a project with an
original planned duration of over a year. The team
consisted of five teams and over 30 engineers, and all
teams used Scrum.

The key advantages of Scrum that the team observed
were:

� Planning and tracking become a collaboration invol-
ving the whole team

� Excellent communication builds up within the team,
thus building morale and helping the team to ‘gel’

� The team lead has more bandwidth for technical work
� It enables the team to deliver on-time

The early adoption of Scrum has led to the formulation
of internal training courses and in short time the use of
Scrum has reached critical mass. Intel Shannon have
adapted it very much to their needs with the highly
visible daily meeting report. Also, the use of Scrum has
led to consistent meeting of development schedules on
very complex projects with long project durations, but
with no degradation in product quality.

Discussion
The first research objective of this study was to investi-
gate the usage and tailoring of agile methods in practice.
A review of previous research literature highlighted two
approaches to method tailoring, namely contingency
factors and method engineering, and we considered the
applicability of both in the context of Intel Shannon.

Contingency factors
The study of Intel Shannon revealed that they did not
adopt a strict contingency factor approach (Avison &
Wood-Harper, 1991). This would require Intel Shannon
to have explicitly investigated the methods available to
them, agile or otherwise, and then select an overall
method based on their context and environment. The
adoption and tailoring of XP and Scrum was proactively
driven by a small number of committed champions
within the organisation. Rather than explicitly compa-
ring and contrasting available methods against a set of

criteria, the methods were adopted in a more pragmatic
fashion as discussed above. Nevertheless, while Intel
Shannon did not compare and contrast methods before
the selection of XP and Scrum, they did consider
comparisons after the projects were completed. As a
thought experiment, the developers tried to imagine
how the software would have turned out if the more
traditional development process they were familiar with
had been followed. Thus, the comparison of methods
against the context of Intel’s projects was conducted after
the event, rather than before.

Method engineering
The Intel Shannon approach has more in common with
the method engineering model (Kumar & Welke, 1992) of
a meta-method constructed from existing method frag-
ments. It is also similar to the model in use in Motorola
(Fitzgerald et al., 2003) in that at a macro-level, the XP
and Scrum methods provide an overall framework within
which a micro-level tailoring occurs at individual project
level. For example, Intel Shannon deconstructed XP,
and only used six of the 12 key practices, with project
personnel believing that it would be impossible, or at
least impractical to implement all practices strictly. This
supports McBreen’s (2003) view that developers must
overcome the naı̈ve view of one best method or set of
practices. It must be noted, however, that Intel Shannon
did not simply pick the few parts of XP and Scrum that
they liked, while ignoring the rest. An interesting
distinction between this study and previous research is
that Intel Shannon considered all principles before
discarding some, as opposed to studies where a small
number of principles, for example, pair programming, are
examined without adequate consideration to the others.
The XP practices that were unused in Intel Shannon were
carefully considered and eventually omitted on the
grounds that they were not applicable in the develop-
ment context.

Also, there were some departures from the conven-
tional wisdom in the agile practices that were adopted at
Intel Shannon. Quite notably, the agile maxim that the
‘code is the documentation’ was just not practical in their
development context where products are shipped to an
external customer who will not be in a position to
communicate directly with the development team.
Therefore, comprehensive and accurate documentation
is critical in these circumstances, a scenario that probably
applies more widely than presumed by agile advocates.

The practice of collective ownership was also interest-
ing in that it provided much flexibility in relation to
maintenance of code. This was especially useful in the
Intel Shannon context where team membership was
quite volatile. However, the eventual constraint that
collective ownership be confined to a within-team basis is
a useful yardstick. Too limited collective ownership
would probably result in failure to realise the benefits,
whereas too wide a scale of collective ownership could

Customising agile methods to software practices Brian Fitzgerald et al206

European Journal of Information Systems

introduce communication problems in relation to main-
tenance and configuration management.

As well as selecting and tailoring individual compo-
nents of the XP and Scrum methods, Intel Shannon
displayed an even more advanced use of method tailoring
on two other fronts. Firstly, the method tailoring effort
was run across both methods simultaneously. For example,
the planning game, a key XP practice, was omitted
because it was already accomplished by Scrum. This
shows that Intel Shannon were not just tailoring one
method, but drawing from across a palette of both
methods. Secondly, not only did they select parts of
methods, they also modified some practices and replaced
others with substitute practices. For example, Scrum
plans were verified by an external team, contingency
plans were put in place, and time-boxing was not used.
These examples illustrate how Intel Shannon adapted the
Scrum method to suit their organisation and develop-
ment context.

The maxim that a picture paints a thousand words also
has resonances in the Scrum daily meetings with Post-Its
on a whiteboard. As well as creating a shared visual
experience and a reminder of work to be done each day,
this low-tech innovation has had other useful side-
effects. Firstly, the existence of the high-profile daily
meeting board served as a useful catalyst to grow the use
of Scrum at Intel Shannon. Other teams could see the
meeting board and witness the daily meeting. The low-
tech nature meant it was easy to replicate for other teams
who could try it out without any mandate by manage-
ment. This led to very committed usage of the method
over time. However, it also provides the focus for
teleconference meetings that allow distributed teams
get a visual sense of shared experience.

Another point of relevance to method engineering
research is that the conceptualisation of agile method
fragments is often over-simplified in research studies.
For example, pair programming is not as simple as just
having two people code together. Some etiquette and
rules of behaviour need to be worked out in advance.
There are definitely some scenarios where pair program-
ming does not work well – for example on simple or well-
understood problems which could be fixed as quickly as a
single developer could type, or when doing lots of small
changes as it tended to get frustrating. It was also found
to break the flow of concentration if one of the pair
needed to pause to communicate non-obvious ideas to
the pair partner. There were also some practical impedi-
ments to the spread of pair programming at the
individual engineer level, as the perception arose that
individual ownership of code components could be of
more value when employee performance reviews were
being conducted. This is a concrete illustration of the fact
that software development takes place in a complex
socio-political organisational context. Any useful soft-
ware development practice must also be suitably rein-
forced rather than undermined by accompanying
organisational reward mechanisms.

Synergistic combination of agile practices
The literature on agile methods offers contrasting
opinions as to whether XP and Scrum can be fragmented,
and whether each fragment may be treated completely
independently of the others. Although Intel Shannon’s
experience certainly indicated an a la carte use of XP
(Stephens & Rosenberg, 2003), in that they only adopted
six of the 12 practices; it must be noted that there were
considerable synergistic interdependencies among the
practices they did adopt. For example, pair programming
facilitated collective ownership although the latter was
confined to collective ownership within a project team.
Similarly, the use of the refactoring practice reinforced
simple design. In general where pair-programming was
adopted it tended to lead to a smaller code base,
and as defect rate is directly correlated with code length
this has led to more efficient use of resources. Thus,
synergies can arise through the combination of a subset
of the overall agile practices. Therefore, this study
concludes that a more nuanced view is necessary which
combines elements of both Stephens and Rosenberg’s
(2003) belief in the a la carte approach, and that of
Schwaber & Beedle (2002) which states that practices are
not divisible and individually selectable. This study
shows how subsets of principles are interdependent, but
not that every XP or Scrum practice is dependent on all of
the others.

Combining agile methods
The second objective of this research study was to
examine how agile methods could be combined to
complement each other. The literature review high-
lighted a dearth of knowledge in this area. The Intel
Shannon context was an ideal setting to examine this
area in more detail, as XP and Scrum were both used on
the same project at the same time. The overall finding of
the study was that, while XP and Scrum may each be
incomplete in their coverage of the overall development
process, they are very complementary in that XP provides
good support for the more technical and coding
aspects of development while Scrum provides a very
good framework for project planning and tracking (see
Figure 3). Also, both methods are very developer friendly;
indeed, the usage of the methods is championed at
engineer level and has grown organically from the
grassroots engineer level. This is in stark contrast to
many organisations, where the use of development
methods is mandated by management which often leads
to far less actual usage of these methods (Fitzgerald,
1998). The dynamic interaction among small teams at
Intel Shannon has helped with morale-building and
improved communication among developers, thus facil-
itating collaboration. Thus, the developer-centric quali-
ties of agile methods lead to considerable benefits at the
people and participation level.

It is also generally held in the agile literature that plan-
based methods such as those implied by the Capability
Maturity Model (CMM) are incommensurate with

Customising agile methods to software practices Brian Fitzgerald et al 207

European Journal of Information Systems

an agile approach, although this has been shown
conceptually to be an oversimplification (Paulk, 2001).
This study provides practical evidence from actual
development practice that software process improvement
initiatives such as CMM can co-exist with sophisticated
and successful agile development. Intel Shannon had
already been certified as CMM Level 2, and agile methods
were introduced in parallel. The use of agile methods has
not caused any perturbation in relation to their CMM
certification level.

Another interesting aspect of the study was the
relationship between agile methods and distributed
development. It has been suggested that agile methods
are not applicable for distributed development, primarily
due to the fact that they usually require small co-located
teams or on-site customers. The deployment of Scrum
on a distributed development project at Intel Shannon
suggests that Scrum may be more amenable to distributed
development than has been assumed up to now.

One of the limitations of this study might appear to be
its lack of generalisability, as the data collected is specific
to the particular context of Intel Shannon. We have
already discussed the misplaced and perhaps misguided
attempts to improve generalisability in research (Lee &
Baskerville, 2003). Here we sought to get a rich picture of
the situation as it applied in one real development
context. Indeed, we are heartened by Mintzberg’s (1979,
p. 583) very apt question: ‘what, for example, is wrong
with samples of one?’

Summary and conclusions
Overall, there are many lessons from this research at Intel
Shannon. The study is useful in being solidly based on
the rigorous and disciplined implementation of agile
approaches in a real development context involving
experienced software engineers, with a careful reflection
on subsequent results, rather than a study of student
teams in the more artificial context of a university
project. The latter would allow more experimental
control undoubtedly, but the realism of context that this
study provides is arguably an equally important trait.
The study also provides many insights into the process
whereby Intel Shannon moved from the textbook version
of XP and Scrum to the variants they eventually used. It
illustrates in detail how both methods were tailored, and
shows not just the practices adopted, but just as
importantly, the ones that were omitted and why. It also
reveals how the methods were fragmented and imple-
mented in a fashion such that they complemented each
other. Furthermore, it describes Intel’s experience of the
synergistic relationship that may arise among a subset
of some fragments, although dismissing the idea that a
method can only be used if it is used in its entirety.

Although a key contribution of the paper lies in its
description of how Intel Shannon tailored, deviated,
replaced and combined parts of XP and Scrum, one of the
limitations of the study is that it is difficult to assess
whether Intel’s final method is superior to (i) traditional
methods and (ii) XP and Scrum if left untouched. This

XP Practices

Pair-Programming

Testing

Metaphor

Collective
Ownership

Refactoring

Coding Standards

Simple Design

Planning Game

Small Releases

Continuous
Integration

40-Hour Week

On-Site Customer

Scrum Practices

Scrum Planning

Scrum Sprints

Post-Game Closure
Sessions

Architecture

Project
management "soft"

aspects of
development

Technical "hard"
aspects of

development

Figure 3 Complementarity of methods in Intel.

Customising agile methods to software practices Brian Fitzgerald et al208

European Journal of Information Systems

limitation is partially overcome through an analysis of a
thought experiment Intel Shannon ran after the project
was completed, where the team were asked to consider
the merits and demerits of the method they used in
comparison to more traditional methods. They believed
it would have taken in or around the same time, and any
discrepancies would be lost in the noise of overhead.
However, they felt the traditional code would probably
have been quite a bit more complex and long to cater
for situations that would probably never occur. As
mentioned above, since the defect rate is a constant, this
would equate to more bugs. The development statistics
reported above illustrate conclusively that agile methods,
and more specifically, pragmatically selected fragments
of agile methods, can deliver quality software within
schedule. Indeed, the country manager for Intel in
Ireland has identified Intel Shannon’s delivery of ex-
tremely high-quality software within schedule as the ‘key
competitive edge’ for Intel Shannon.

In conclusion, it is clear that contemporary agile
methods such as XP and Scrum are not anti-method,
and require an equally disciplined approach, and as much
tailoring as any traditional method. Indeed, we might
leave the last word to Tom DeMarco, one of the
pioneering figures of the structured approach, whose
observations a quarter century ago are still as relevant
today:

I find myself more and more exasperated with the great
inflexible sets of rules that many companies pour into
concrete and sanctify as methodologies. Use the prevail-
ing methodology only as a starting point for tailoring
(DeMarco, 1982, 13).

Acknowledgements
This research was supported by the Science Foundation
Ireland Grant 02/IN.1/I108 and the European Commission

FP6Grant 4337(CALIBRE).

About the authors

Professor Brian Fitzgerald holds the Frederick A Krehbiel
II Chair in Innovation in Global Business and Technology
at the University of Limerick, Ireland, where he also is a
Research Fellow and Science Foundation Ireland Principal
Investigator. He holds a Ph.D. from the University of
London. Having worked in industry prior to taking up an
academic position, he has more than 20 years experience
in the software field.
Gerard Hartnett is a software architect in Intel’s R&D
facility in Shannon Ireland. He managed the global team
that developed software/firmware for the IXP4XX product

line. He is currently working on new product architectures.
He has over 15 years experience in software development
with companies like Tellabs, Digital, and Motorola.
Kieran Conboy, prior to joining NUI, Galway, worked for
Accenture Consulting across many industrial sectors,
such as financial services, communications, and the
public sector. These engagements involved organisations
across the UK, central Europe, the Nordics and the U.S.
Kieran is a member of the Chartered Institute of Manage-
ment Accountants, and is now completing a Ph.D. at the
University of Limerick.

References
ABRAHAMSSON P, SALO O, RONKAINEN J and WARSTA J (2002) Agile Software

Development Methods: Review and Analysis. VTT Publications, Finland.
ABRAHAMSSON P, WARSTA J, SIPONEN M and RONKAINEN J (2003) New

directions on agile methods: a comparative analysis. Proceedings of
25th ICSE, Portland, OR.

AMBLER SW (2002) Agile Modeling: Best Practices for the Unified Process and
Extreme Programming. John Wiley & Sons, New York.

AOYAMA M (1997) Agile software process model. Proceedings of the
21st International computer software and applications conference
(COMPSAC 97), 11–15 August IEEE Computer 454–459, IEEE Computer
Society Press, Washington, DC.

AVISON D and WOOD-HARPER A (1991) Information systems development
research: an exploration of ideas in practice. The Computer Journal 34,
98–112.

BECK K (1999) Extreme Programming Explained. Addison-Wesley, Reading,
MA.

BECK K (2000) Extreme Programming Explained: Embrace Change. Addison-
Wesley, Reading, MA.

BENBASAT I, GOLDSTEIN D and MEAD M (1987) The case research strategy in
studies of information systems. MIS Quarterly 11(3), 369–386.

BOEHM B (1984) Models and Metrics for Software Management and
Engineering. IEEE Computer Society Press, NY.

BOEHM B (1988) A spiral model of software development and
maintenance. IEEE Computer 21, 61–72.

BOEHM B (2002) Get ready for agile methods, with care. IEEE Computer
35(1), 64–69.

BOWERS J, MAY J, MELANDER E, BAARMAN M and AYOOB A (2002) Tailoring
Xp for large mission critical software development. In XP/Agile Universe
(WELLS D and WILLIAMS L, Eds), Springer, Chicago, IL.

BROOKS F (1987) No silver bullet: essence and accidents of software
engineering. IEEE Computer 20(4), 10–19.

CHAE B and SCOTT POOLE M (2005) The surface of emergence
in systems development: agency, institutions, and large-scale
information systems. European Journal of Information Systems 14,
19–36.

COAD P, DE LUCA J and LEFEBRE E (1999) Java Modelling in Color. Prentice
Hall, Englewood Cliffs, NJ.

COCKBURN A (2001) Agile Software Development. Addison–Wesley,
Reading, MA.

CONSTANTINE L (2001) Methodological agility. Software Development June
67–69.

CUNNINGHAM W (1995) Episodes: a pattern language of competitive
development. In Pattern Languages of Program Design (KERTH N, KOPLIEN

J and VLISSIDES J, Eds) Addison–Wesley, Reading, MA.

Customising agile methods to software practices Brian Fitzgerald et al 209

European Journal of Information Systems

DEMARCO T (1982) Controlling Software Projects: Management Measure-
ment and Estimation. Prentice-Hall, Englewood Cliffs, NJ.

DOHERTY N and KING M (2001) An investigation of the factors affecting
the successful treatment of organisational issues in systems
development projects. European Journal of Information Systems 10,
147–160.

DROBKA J, NOFTZ D and RAGHU R (2004) Piloting Xp on four mission critical
projects. IEEE Software 21, 70–75.

EISENHARDT K (1989) Building theory from case study research. Academy
of Management Review 14, 532–550.

FITZGERALD B (1994) The systems development dilemma: whether to
adopt formalised systems development methodologies or not? In
Proceedings of the Second European Conference on Information Systems
(BAETS W, Ed), Nijenrode University Press, Holland.

FITZGERALD B (1996) Formalised systems development methodologies: a
critical perspective. Information Systems Journal 6, 3–23.

FITZGERALD B (1998) An empirical investigation into the adoption of
systems development methodologies. Information and Management
34, 317–328.

FITZGERALD B (2000) Systems development methodologies: the problem
of tenses. Information Technology and People 13, 13–22.

FITZGERALD B, RUSSO N and O’KANE T (2003) Software development
method tailoring at motorola. Communications of the ACM 46,
64–70.

FOWLER M (2000) Put your process on a diet. Software Development 8(12),
32–36.

FOWLER M and HIGHSMITH J (2001) The agile manifesto. Software
Development, August.

GLASS R (1991) Software Conflict: Essays on the Art and Science of Software
Engineering. Yourdon Press, Prentice Hall, Englewood Cliffs, NJ.

HAMMERSLEY M and GOMM R (2000) Introduction. In Case Study Method
(GOMM R, HAMMERSLEY M and FOSTER P, Eds), Sage, London.

HARMESEN F, BRINKKEMPER S and OEI H (1994) Situational method
engineering for is project approaches. In Methods and Associated Tools
for the Is Life Cycle (VERRIJN-STUART A and OLLE T, Eds), North-Holland,
Amsterdam.

HEDIN G, BENDIX L and MAGNUSSON B (2003) Introducing software
engineering by means of extreme programming. Proceedings of 25th
ICSE, Portland, OR.

HIDDING G (1996) Method engineering: experiences in practice. In
Method Engineering: Principles of Method Construction and Tool Support
(BRINKKEMPER SKL and WELKE R, Eds), Kluwer, London.

HIGHSMITH J (1999) Adaptive Software Development. Dorset House, NY.
HIGHSMITH J and COCKBURN A (2001) Agile software development: the

business of innovation. IEEE Computer 34(9), 120–122.
IIVARI J (1989) A methodology for is development as organisational

change. In Systems Development for Human Progress (KLEIN H and KUMAR

K, Eds) North-Holland, Amsterdam.
JACOBSON I (2002) A resounding yes to agile processes – but also to more.

Cutter IT Journal 15, 18–24.
JEFFRIES R, ANDERSON A and HENDRICKSON C (2000) Extreme Programming

Installed. Addison-Wesley, Reading, MA.
KRUCHTEN P (2000) The Rational Unified Process: An Introduction. Addison-

Wesley-Longman, Boston, MA.
KUMAR K and WELKE RJ (1992) Methodology engineering: a proposal

for situation-specific methodology construction. In Challenges and

Strategies for Research in Systems Development (COTTERMAN W and SENN

J, Eds), John Wiley & Sons Ltd, Washington.
LEE A and BASKERVILLE R (2003) Generalising generalisability in information

systems research. Information Systems Research 14, 221–243.
LEE A (1989) A scientific methodology for MIS case studies. MIS Quarterly

13, 33–50.
LEE G and XIA W (2005) The ability of information systems development

project teams to respond to business and technology changes: a
study of flexibility measures. European Journal of Information Systems
14, 75–92.

LINSTONE H and TUROFF M (1975) Introduction. In The Delphi Method:
Techniques and Applications (LINSTONE H and TUROFF M, Eds), Addison-
Wesley, Reading, MA.

LYCETT M and PAUL R (1999) Information systems development: a
perspective on the challenge of evolutionary complexity. European
Journal of Information Systems 8, 127–135.

MARSHALL C and ROSSMAN G (1989) Designing Qualitative Research. Sage
Publications, California.

MCBREEN P (2003) Questioning Extreme Programming. Addison-Wesley,
Boston, MA.

MINTZBERG H (1979) The Structuring of Organisations. Prentice-Hall,
Englewood Cliffs, NJ.

MULLER M and TICHY W (2001) Extreme programming in a university
environment. Proceedings of 23rd ICSE, Toronto, Canada.

PAULK M (2001) Extreme programming from a CMM perspective. IEEE
Software 18(6), 1–8.

POPPENDIECK M (2001) Lean programming. Software Development
Magazine 9, 71–75.

SARKER S and SAHAY S (2004) Implications of space and time for
distributed work: an interpretive study of US–Norwegian systems
development teams. European Journal of Information Systems 13, 3–20.

SCHWABER K and BEEDLE M (2002) Agile Software Development with Scrum.
Prentice-Hall, Upper Saddle River, NJ.

SILVERMAN D (1998) Qualitative research: meaning or practice. Informa-
tion Systems Journal 8, 3–20.

STAPLETON J (1997) DSDM: Dynamic Systems Development Method.
Addison Wesley, Harlow, England.

STEPHENS M and ROSENBERG D (2003) Extreme Programming Refactored,
Apress, NY, ISBN 1-59059-096-1.

STOTTS D, WILLIAMS L, NAGAPPAN N, BAHETI P, JEN D and JACKSON A (2003)
Virtual teaming: experiments and experiences with distributed pair
programming. Extreme Programming/Agile Universe 2003 (MAURER F
and WELLS D, Eds), pp 129–141, Springer.

TRAUTH E and O’CONNOR B (1991) A study of the interaction between
information, technology and society. In Information Systems Research:
Contemporary Approaches and Emergent Traditions (NISSEN H, KLEIN H
and HIRSCHHEIM R, Eds), Elsevier, North Holland.

TRAVERS M (2001) Qualitative Research through Case Studies. Sage,
London.

WALKER R (1988) Applied Qualitative Research. Hampshire, Gower.
WALSHAM G (1995a) The emergence of interpretivism in is research.

Information Systems Research 6, 376–394.
WALSHAM G (1995b) Interpretive case studies in is research: nature and

method. European Journal of Information Systems 4, 74–81.
YIN R (2003) Case Study Research: Design and Methods. SAGE Publica-

tions, Thousand Oaks, CA.

Customising agile methods to software practices Brian Fitzgerald et al210

European Journal of Information Systems

