
Linking Model-Driven Development and
Software Architecture: A Case Study

Anders Mattsson, Member, IEEE, Björn Lundell, Member, IEEE, Brian Lings, and Brian Fitzgerald

Abstract—A basic premise of model-driven development (MDD) is to capture all important design information in a set of formal or

semiformal models, which are then automatically kept consistent by tools. The concept, however, is still relatively immature and there

is little by way of empirically validated guidelines. In this paper, we report on the use of MDD on a significant real-world project over

several years. Our research found the MDD approach to be deficient in terms of modeling architectural design rules. Furthermore, the

current body of literature does not offer a satisfactory solution as to how architectural design rules should be modeled. As a result

developers have to rely on time-consuming and error-prone manual practices to keep a system consistent with its architecture. To

realize the full benefits of MDD, it is important to find ways of formalizing architectural design rules, which then allow automatic

enforcement of the architecture on the system model. Without this, architectural enforcement will remain a bottleneck in large

MDD projects.

Index Terms—Case study, model-driven development, software architecture.

Ç

1 INTRODUCTION

MODEL-DRIVEN development (MDD) [45] is an emerging
discipline [4], [44] where the prevalent software-

development practices in the industry are still immature
[17]. The success of MDD in practice is currently an open
question [17], and there is a lack of proven real-world usage
of MDD in large industrial projects.

A basic premise of MDD is to capture all important
design information in a set of formal or semiformal models
that are automatically kept consistent by tools. This raises
the level of abstraction at which the developers work, which
can eliminate time-consuming and error-prone manual
work in keeping different design artifacts consistent [17].
An important design artifact in any software development
project, with the possible exception of very small projects, is
the software architecture [6]. An important part of any
architecture is the set of architectural design rules. We
define architectural design rules as the rules, specified by
the architect(s), that need to be followed in the detailed
design of the system. The importance of architectural
design rules has been further highlighted by recent research
on software architecture [20], [21], [24], [26], [50], which has
acknowledged that a primary role of the architecture is to
capture the architectural design decisions. An important
part of these design decisions consists of architectural
design rules. In an MDD context, the design of the system is
captured in models of the system; therefore, architectural

design rules in an MDD context specify rules that the

models of the system have to conform to. There is, however,
no satisfactory solution in the current body of literature on
how to model architectural design rules.

Given the above concerns—the lack of real-world
rigorous validation of the MDD approach and the absence
of guidelines as to how architectural design rules can be

modeled—our research objective here was to investigate the
application of MDD in a large project and to assess the

extent to which architectural design rules could be
smoothly integrated into the process.

This paper is organized as follows: In the next section,

we review the literature on architectural design rules and,
especially, research relevant to modeling architectural

design rules and MDD. In Section 3, we present the
research approach adopted in this study. In Section 4, we
present the findings of a case study, and finally, in Section 5,

we discuss our conclusions and implications for theory and
practice.

2 MODELING ARCHITECTURAL DESIGN RULES

AND MDD

In order to validate our research objective, we conducted a

detailed review of the relevant literature, using the specific
approach proposed in [32]:

. Keyword searches were done in IEEE Xplore, ACM
Portal, ScienceDirect, SpringerLink, Inspec, CiteSeer,
and Google Scholar.

. Having identified relevant articles, we performed
backward and forward reference search and back-
ward and forward author search.

. During the search, additional relevant keywords
were used to refine the search process.

The primary goal of the review was to investigate the

role of architectural design rules and how these rules can be

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. 1, JANUARY/FEBRUARY 2009 83

. A. Mattsson is with Combitech AB, PO Box 1017, SE-551 11 Jönköping,
Sweden. E-mail: anders.mattsson@combitech.se.

. B. Lundell and B. Lings are with the University of Skövde, PO Box 408,
SE-541 28 Skövde, Sweden. E-mail: {bjorn.lundell, brian.lings}@his.se.

. B. Fitzgerald is with Lero-the Irish Software Engineering Research Centre,
University of Limerick, Ireland. E-mail: bf@ul.ie.

Manuscript received 4 Feb. 2008; revised 9 June 2008; accepted 6 Aug. 2008;
published online 15 Oct. 2008.
Recommended for acceptance by R. Taylor.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-2008-02-0058.
Digital Object Identifier no. 10.1109/TSE.2008.87.

0098-5589/09/$25.00 � 2009 IEEE Published by the IEEE Computer Society

modeled, especially in relation to MDD. We also wanted to
find out what had been reported on architectural practices
in large industrial projects and how this related to our case
study. Overall, there are very few case studies on MDD in
industrial projects, e.g., [3], [48], but, to the best of our
knowledge, there are no case studies that illuminate
architectural work practices in such projects. The main
conclusions of this literature review were the following:

. Architectural design rules are important design
artifacts for which there is no direct support in
MDD.

. There is no satisfactory solution on how to model
architectural design rules in the current body of
literature.

We discuss these findings in more detail in the sections
below.

2.1 The Role of Architectural Design Rules

The IEEE has established a set of recommended practices
for the architectural description of software-intensive
systems [19], which are followed by several architectural
design methods:

. Attribute-Driven Design (ADD) [6], [53] developed
at CMU/SEI,

. The Rational Unified Process (RUP) 4þ1 views [25],
[27] developed and commercialized by Rational
Software, now IBM,

. The QASAR method [8], [9], [10] developed by the
RISE research group at the University of Karlskro-
na/Ronneby,

. Siemens’ 4 Views (S4V) method [18], [47], developed
at Siemens Corporate Research,

. Business Architecture Process and Organization
(BAPO/CAFCR) developed primarily at Philips
Research [1], [52], and

. Architectural Separation of Concerns (ASC) [43]
developed at Nokia Research.

The purpose of the architecture is to guide and control
the design of the system so that it meets its quality
requirements. Bass et al. [6] are unequivocal in stating the
importance of an architectural approach:

The architecture serves as the blueprint for both the system and the
project developing it. It defines the work assignments that must be
carried out by design and implementation teams and it is the
primary carrier of system qualities such as performance,
modifiability, and security—none of which can be achieved
without a unifying architectural vision. Architecture is an artefact
for early analysis to make sure that the design approach will yield
an acceptable system. Moreover, architecture holds the key to post-
deployment system understanding, maintenance, and mining
efforts. In short, architecture is the conceptual glue that holds
every phase of the project together for all of its many stakeholders.

A common understanding in architectural methods is
that the architecture is represented as a set of components
related to each other [42], [46]. The components can be
organized into different views focusing on different aspects
of the system. Different methods propose different views;
typical views are a view showing the development
structure (e.g., packages and classes), a view showing the
runtime structure (processes and objects), and a view

showing the resource usage (processors and devices). In
any view, each component is specified with the following:

. an interface that documents how the component
interacts with its environment,

. constraints and rules that have to be fulfilled in the
design of the component,

. allocated functionality, and

. allocated requirements on quality attributes.

A typical method of decomposition (see, for instance, [6],
[53], and [9]) is to select and combine a number of patterns
that address the quality requirements of the system and use
them to divide the functionality in the system into a number
of elements. Child elements are recursively decomposed in
the same way down to a level where no more decomposi-
tion is needed, as judged by the architect. The elements are
then handed over to the designers who detail them to a
level where they can be implemented. For common
architectural patterns such as Model-View-Controller,
Blackboard, or Layers [13], this typically means that you
decompose your system into subsystems containing differ-
ent kinds of classes (such as models, views, and controllers).
However, the instantiation into actual classes is often left to
the detailed design, for two main reasons:

1. Functionality will be added later, either because it
was missed or because a new version of the system
is developed, so more elements will be added later
that also have to follow the design patterns decided
by the architect.

2. It is not of architectural concern. The concern of the
architect is that the design follows the selected
architectural patterns and not to do the detailed
design.

This means that a substantial part of the architecture
consists of design rules on what kinds of elements, with
behavioral and structural rules and constraints, there
should be in a certain subsystem.

The importance of architectural design rules is also
highlighted in current research in software architecture,
which is focused on the treatment of architectural design
decisions as first-class entities [20], [21], [24], [26], [50],
where architectural design decisions impose rules and
constraints on the design together with rationale. However,
there is not yet any suggestion on how to formally model
these design rules. The current suggestion is to capture
them in text and to link them to the resulting design. This
may be sufficient for rules stating the existence of elements
(“ontocrisis” in [24]) in the design, such as a subsystem or
an interface, since the architect can put the actual element
(i.e., a certain subsystem) into the system model at the time
of the decision. It is, however, not sufficient for rules on
potentially existing elements (“diacrisis” in [24]), such as
rules on what kinds of elements, with behavioral and
structural rules and constraints, there should be in a certain
subsystem, since the actual elements are not known at the
time when the design decision is made. Instead, the rule-
based design occurs later in the detailed design phase and
involves other persons, potentially even in a different
version of the system.

84 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. 1, JANUARY/FEBRUARY 2009

2.2 MDD and Architectural Design Rules

The basic idea of MDD is to capture all important design
information in a set of formal or semiformal models that are
automatically kept consistent by tools. The purpose is to
raise the level of abstraction at which the developers work
and to eliminate time-consuming and error-prone manual
work in keeping different design artifacts consistent [17].

MDD requires that the work products produced and
used during development are captured in models to allow
automation of noncreative tasks such as transformation of
models into code or conformance checks between different
design artifacts. There exist several approaches to MDD,
such as OMG’s MDA [40], Domain Specific Modeling
(DSM) [22], [49], and Software Factories [16] from Microsoft.

MDA prescribes that three models or sets of models shall
be developed as illustrated in Fig. 1:

1. The Computationally Independent Model(s) (CIM)
captures the requirements of the system.

2. The Platform-Independent Model(s) (PIM) captures
the systems functionality without considering any
particular execution platform.

3. The Platform-Specific Model(s) (PSM) combines the
specifications in the PIM with the details that specify
how the system uses a particular type of platform.
The PSM is a transformation of the PIM using a
mapping either on the type level or at the instance
level. A type-level mapping maps types of the PIM
language to types of the PSM language. An instance-
level mapping uses marks that represent concepts in
the PSM (such as a process or a Corba object). When
a PIM shall be deployed on a certain platform, the
marks are applied to the elements of the PIM before
the transformation.

MDA does not prescribe any particular language to be
used for the models, but UML [41] is proposed as one
possibility. There is also an accompanying OMG standard,
Metaobject Facility (MOF), which can be used to describe
metamodels for modeling languages. MDA does not

directly address architectural design or how to represent

the architecture, but the architecture has to be captured in

the PIM or in the mapping since the CIM captures the

requirements and the PSM is generated from the PIM using

the mapping.
Another approach to MDD is DSM. The basic idea of

DSM is that instead of using a general-purpose language

such as UML to model your system you define and use a

language that is specifically well suited to define systems in

a narrow domain. In Fig. 2, the basic approach of DSM is

illustrated. A DSM Language (DSML) is defined that

captures the main concepts in the domain of an application.

This DSML definition is then used as input into a language-

configurable modeling tool in which the system is modeled

in the DSML. Examples of this approach are described in

[22] and [49].
The DSML is defined by an abstract syntax, a concrete

syntax, semantics, a mapping between the abstract syntax

and the concrete syntax, and a mapping between the

abstract syntax and the semantics. The abstract syntax is

typically defined in a model that defines the concepts of the

domain, relationships, and integrity constraints. For this

one can, for instance, use UML and OCL. Since this is a

model that in turn defines elements of a language for a

model, it is called a metamodel [2]. The concrete syntax of

the language is comprised of the visual symbols that

represent the concepts in the metamodel. To provide this

and the mapping to the abstract syntax, one must specify

symbols for the model elements in the metamodel. The

semantics of the language define the meaning of the

concepts in the abstract syntax. Defining semantics and

mapping these to the abstract syntax can be done by

providing translations of the metamodel into another

language with defined semantics, such as a programming

language. DSM can be seen as a special case of MDA where

a domain-specific language is defined for use in the PIM.
Software factories is an MDD approach that incorporates

the DSM idea but goes further since it provides a method

for building complete customized tool chains for product

MATTSSON ET AL.: LINKING MODEL-DRIVEN DEVELOPMENT AND SOFTWARE ARCHITECTURE: A CASE STUDY 85

Fig. 1. An overview of MDA.

Fig. 2. Domain Specific Modeling.

families using extensible tools. Such a tool chain is called a
software factory.

Although neither the DSM nor the software factory
approach directly address the problem of how to model
architectural rules, it is interesting in that they allow you to
naturally specify rules on the system model in the DSML
definition. In fact, that is basically what the DSML
definition is—a set of rules that have to be followed when
building the system model. These rules are, however, not
the architectural design rules, they are the rules of a
domain-specific language.

2.3 Modeling Architectural Design Rules

There are a large number of Architectural Description
Languages (ADL) [34], [35], [36], including UML, specified
for describing the architecture of software systems. These
typically allow one to specify components with relations
and interfaces together with functional and structural
constraints. They do not, however, provide any means to
specify constraints or rules on groups of conceptual
components only partly specified by the architect that are
intended to be instantiated and detailed by designers. For
instance, in the project reported on in this study, the
architects needed to specify a set of rules on behavior and
relations on a conceptual component called arcComponent
without knowing which specific arcComponents would be
relevant. Rather, they were to be identified and designed by
the designers according to the rules stated by the architects.

The problem of modeling design rules is essentially the
same problem as modeling the solution part of a design
pattern since the solution specifies rules to follow in the
design. There are a number of suggestions on how to
formally model design pattern specifications [7], [14], [29],
[33], [37]. They are, however, all limited in what kind of
rules they can formalize, typically only structural rules. In
addition, all approaches except [33] require the architect to
use mathematical formalisms such as predicate logic and
set theory that may be unfamiliar or hard to understand for
both architects and developers.

There are also some approaches on how to model the
usage of architectural design patterns or architectural styles
in a system model, such as [38], [55]. However, they only
address the problem of how to show that an architectural
rule has been followed and not the problem of how to
specify the rule.

3 RESEARCH APPROACH

Much of the research on the application of software
methods to date has relied on postal surveys to investigate
factors using statistical techniques. This is undoubtedly
useful, but it is often beneficial to complement this with a
“thick” description, which provides a more detailed and
nuanced description of the factors at play in a particular
context.

This research is based on experience at Combitech AB
(www.combitech.se), a Swedish supplier of services within
system development, system integration, information se-
curity, and system safety. Combitech, a wholly owned
subsidiary of Saab AB, can be found in 20 locations in
Sweden and the company has more than 800 employees.

Customers are primarily from the defense and telecommu-
nications industry, as well as government offices and
authorities responsible for infrastructure in society.

Braa and Vidgen [11] propose a useful framework
(Fig. 3) integrating positivist, interpretivist, and critical
research approaches. Briefly summarizing, in Fig. 3, the
apexes of the triangle represent the different perspectives
and outcomes of the research. Thus, from the positivist
perspective, a reductionist approach would be followed to
produce the desired outcome, which is that of prediction.
From the interpretivist perspective, on the other hand, the
primary motivation would be that of understanding, while,
from the critical interventionist perspective, the motivation
would be one of change.

Given the lack of research to date on the application of
MDD in real industrial projects and, more specifically, the
modeling of architectural design rules, this study was
concerned with achieving an increased understanding of
this process. Bearing this in mind, an interpretivist
approach that sought to inductively develop a richer
understanding based on a deep analysis of a single case
was deemed appropriate. Also, as it represents uncharted
territory to a large extent, the study was also motivated by
an interventionist desire to achieve successful change in this
real organizational problem given the lack of any road map
documenting how this can be successfully achieved.

Given these objectives, a hybrid of the interventionist/
change and interpretivist/understanding perspectives was
appropriate. Braa and Vidgen locate a number of hybrid
research approaches where a mixture of perspectives is
motivating the research, and in the case of a mixture of
interventionist/change and interpretivist/understanding
perspectives, as in this study, the Action Case approach is
deemed appropriate. As can be seen in Fig. 3, the Action Case
approach is a hybrid of the Soft Case and Action Research
approaches, each of which is discussed in turn below.

In Soft Case research, an interpretivist approach is
adopted. The concern is more with gaining understanding
and insight [51]. It is our belief that, in this area where little
exists by way of successful exemplars, the appropriate
approach is an in-depth study that a single case provides,

86 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. 1, JANUARY/FEBRUARY 2009

Fig. 3. A framework for integrating research perspectives (based on

Braa and Vidgen [12]).

what has been termed the “revelatory case” [54]. A single-
case strategy is also strongly recommended by Mintzberg,
who poses the very apt question “what, for example, is
wrong with samples of one?” [39]. One of the limitations of
this study might appear to be the fact that it is based on a
single case and, thus, there is limited scope for general-
ization. However, Lee and Baskerville [30] identify a
fundamental and long-standing problem with the type of
generalization based on the type of statistical sampling
frequently sought in research, namely, the problem of
attempting to generalize to any other settings beyond the
current one. Following this conventional model, researchers
have suggested increasing the sample size or the number of
case study organizations, but Baskerville and Lee argue
cogently for the ultimate futility of this flawed strategy.

Action research originates from the work of Lewin [31],
and several “flavors” have emerged. At heart, however, there
is general agreement on a number of essential characteristics:
It is a highly participative approach, which implies a close
intertwining between researchers and practitioners interven-
ing on real problems in real contexts, with two primary
outcomes: an action outcome in terms of a (hopefully)
beneficial intervention in the organization and a research
outcome in terms of a contribution to research on the
phenomenon in question. It is also a longitudinal cyclical
process of intervention and reflection, with any learning fed
back in successive action research cycles. e.g., [5], [23], [28].

These characteristics were very much present in this
research: The primary author is currently the lead engineer in
MDD and software architecture at Combitech. He has 18 years
of experience with development of embedded real-time
systems from a wide range of organizations in the auto-
motive, defense, medical, telecom, and automation indus-
tries. In the last 13 of these years, he has alternated between
the roles of a software architect and a mentor in software
architecture and MDD in several projects. The research
reported in this paper was motivated by problems in
architectural work practices experienced in these projects.

The overall objective of this research was to identify
potential improvements to architectural practices in an MDD
context based on tensions between MDD practices and
architectural practices as revealed in an industrial case where
architectural enforcement was an important issue. That is, a
case where there were a relatively large number of developers
(more than 20) that had to follow an unfamiliar architecture.
Questions to be answered by this research were:

. How were the rules documented?

. How were they communicated and enforced?

. How did the actual work practices regarding
architectural design rules affect the overall develop-
ment process?

The research focused on architectural practices in a
development project that was executed over a two-year
period. The analysis is based on a rich set of system and
project documentation, collected from the configuration
management tool used by the project, including

. the architecture design rule document and the
system model revealing how the architecture was
documented and how the detailed design was done,

. documents defining the development process of the
project,

. architecture review protocols with comments and
actions revealing problems in the interpretation of
the architecture and the effort to correct them (there
were 120 review protocols with an average of
13 remarks in each protocol), and

. project plans and progress reports showing the
planned and actual effort for activities such as
architectural reviews and rework. (These also contain
a number of metrics such as how many modules there
were at each defined module status at the time of the
progress report. One such metric was how many
modules there were waiting for architectural review.
The progress reports covered the construction phase
with an interval of approximately one week.)

Further, the primary author has drawn from experience
related to participation in the project being investigated
where he had the overall responsibility for work practices
and tools. He has also drawn from experiences gained
through participation in several other MDD projects, where
he has either acted as an architect or as a mentor to the
architect(s).

4 INTEGRATING ARCHITECTURAL DESIGN RULES IN

AN MDD PROJECT

This section describes the research findings, beginning with
a description of the research context.

4.1 Action-Case Context

At the start of the project, Combitech faced the challenging
task of developing a software platform for a new generation
of digital TV set-top boxes for the Digital Video Broad-
casting (DVB) standard. The development had to be done in
18 months under strict quality requirements and on a
completely new customized hardware platform developed
in parallel by another company. At the time of the project,
Combitech was a Swedish consultancy company specializ-
ing in services for developing embedded real-time systems.
Combitech had approximately 250 consultants of whom
about 75 where involved in the project. The total effort of
the project was 100+ person years expended over a
24-month period, with the first delivery after 18 months
and two more deliveries with additional functionality and
corrections during the last six months. The project was
distributed across five sites in the south of Sweden where
the geographical distances between sites ranged between
1.5 and 4 hours one-way travel by car. The two architects
were stationed in the same site, which meant that the other
sites had to rely heavily on remote architectural support.

Combitech developed the platform as a phased fixed-
price (price negotiated for each phase) assignment for a
customer company. Combitech had full responsibility for
the software development, but the customer wanted control
of the architecture of the software, so the architecture team
was actually managed by the customer and not by
Combitech, although they were Combitech employees. This
meant that there was a need for a counterpart on the
Combitech side, making sure that the architecture also was

MATTSSON ET AL.: LINKING MODEL-DRIVEN DEVELOPMENT AND SOFTWARE ARCHITECTURE: A CASE STUDY 87

feasible within the budget. This was the project role of the
first author of this paper: technically responsible within the
Combitech project management team, with prime respon-
sibility to negotiate the architecture with the architecture
team on the customer side.

4.2 Project Challenges

The project faced a number of challenges:

. There was a short time to market. Since Combitech
was in competition with other developers, the
product had to be ready at a fixed date.

. Since the hardware was to be developed in parallel
with the software, there would be little time to
integrate the two, leading to a significant risk of errors
and misunderstandings that would have to be
handled by very late changes in the software. There-
fore, Combitech needed to test the software on a range
of platforms, from a host PC to real target hardware
with several intermediate hardware platforms.

. The requirements were a moving target where the
initial requirement specifications would be over-
ridden by acceptance tests delivered late in the
project.

. The maintenance phase would be lengthy and had to
be very cost-effective.

. There was a requirement to be able to differentiate
the product, releasing different variants for different
markets. New variants had to be developed and
maintained efficiently.

. Products would be competing on performance and
quality; the product with the best performance and
quality would win the final contract.

4.3 Rationale for Choosing MDD

Combitech had experience from maintenance on the
previous generation of the product, which had been
developed by another company. The product existed in
many different variants for different markets, so Combitech
was confident that this would be the fact also for the new
product. Combitech saw a potential to make the main-
tenance of the product a lot more efficient by building it
according to a product-line approach.

Within Combitech, there was also extensive experience
of working with models in UML and preceding modeling
languages such as OMT, Booch, Coad-Yourdon, and
Objectory, for both analysis and design models. Combitech
also had experience of using rule-based transformation
from design models directly into code that executed on a
platform. However, in real projects, Combitech had so far
only executed the transformations manually, although
experimentation with automatic code generation had been
done to a degree where the company felt ready to apply it in
a real project. Given this experience, there was conviction
among the project management team that MDD would help
address the challenges of the project by making the team
more efficient, agile, and flexible regarding the hardware
platform:

. Efficiency. MDD would eliminate the manual and
error-prone step of implementing the UML models.

. Agility. The approach would make it possible to
work in an agile way where one could quickly go
from requirements to tested implementation without
having to skip documentation, something very
important for the maintainability of the product.

. Flexibility in HW platforms. MDD would make it
possible to test most of the code without access to the
actual hardware by simply generating code for
different platforms as the project gained access to
hardware that became increasingly similar to the
final target.

4.4 Tool Selection

Given the tight deadline, an out-of-the-box tool solution
was required that would give the following:

. modeling in standard UML, to minimize the need
for training,

. generation of code with good performance on the
target platform, the host platform, and the platform
for the previous generation of set-top boxes since
this would be used as an intermediate test platform,

. 100 percent of the developed code generated from
the model (to avoid synchronization problems with
code and model) having at the same time the ability
to use pure C++ code where there was a need (to
eliminate a potential risk of not being able to do
everything possible in the traditional way),

. the ability to debug at the model level,

. support for distributed team working, and

. a high probability that the vendor would continu-
ously improve the tool toward the requirements of
embedded real-time system development.

After a brief evaluation, Rhapsody from Ilogix was
selected as the only tool that seemed to satisfy all these
requirements.

The selection of Rhapsody meant that the system was
designed as a UML model with action code in C++. This
model (the system model) was then automatically con-
verted to full production code in C++ by the tool. The
generated code uses an execution framework (OXF),
provided by the tool, to abstract out the target execution
platform. In terms of MDA [40], the model built in
Rhapsody corresponds most closely to the PIM, where
OXF and the generated code corresponds to the PSM.

4.5 The Process

The project followed a phased process similar to the RUP
model according to Fig. 4.

The main architectural work was done during the
Elaboration phase for six months by the two architects. The
Construction phase was started with a workshop where the
architecture was presented for the design teams. The
Construction phase was then performed by approximately
50 developers divided into seven teams for 12 months. To
ensure that the design corresponded to the architecture, the
overall design of each component was reviewed by the
architecture team before detailed design of the component
was allowed to start. Since there were 166 components, this
work occupied the architects almost full time during this
phase.

88 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. 1, JANUARY/FEBRUARY 2009

4.6 Capturing the Architecture

To be able to meet the deadline, about 50 developers were

assigned to the project after six months of architectural

work undertaken by the architecture team. To be efficient,

they had to be able to work as independently of each other

as possible. This required a stable architecture to be

developed during these first six months before the project

scaled up. A product-line architecture approach [9] was

selected to address the requirements for efficient develop-

ment and maintenance of product variants. In addition to

this, there were other important quality requirements such

as portability (it was anticipated that the software would

outlive the hardware) and overall performance, which had

to be handled by the architecture. So, an appropriate

architecture was fundamental to the success of the project.
One of the first problems to face was how to represent the

architecture when working in an MDD context. A basic idea

in MDD is to use models instead of documents to represent

the requirements and design of a system and to generate the

implementation code from these models. The traditional way

of representing the architecture is in a document that guides

and constrains the detailed design. In model-oriented

processes like RUP [25], where models have replaced

requirement specifications and design descriptions, one still

represents the architecture in a document. The aim of the

project was, insofar as possible, to automatically connect the

architecture to the design, thereby minimizing both the

maintenance problem and the effort to enforce the architec-

ture in the design. In the end, the project management team

settled for the following approach:

. The high-level structure was to be captured in the
system model as UML packages.

. Architectural design rules were to be captured in
natural language in a text document supported by a
UML-class framework in the system model.

. Example components would be designed in a
package in the system model illustrating how to
follow the architectural rules.

4.6.1 High-Level Structure

The high-level partitioning of the system, down to a level at

which individual components were to be developed by

individual developers, was captured in a package hierarchy

populated with classes acting as facades [15] for the actual

components. The system was divided into a number of

layers according to Fig. 5:

. Hardware Abstraction Layer (HAL), delivered by
the hardware manufacturer,

. Board Support Package (BSP), delivered by the
RTOS vendor,

. Real-Time Operating System (RTOS), which was the
commercially available RTOS VxWorks,

MATTSSON ET AL.: LINKING MODEL-DRIVEN DEVELOPMENT AND SOFTWARE ARCHITECTURE: A CASE STUDY 89

Fig. 4. The phases of the project.

Fig. 5. The layers of the system.

. RTOS Abstraction (OSAL), a wrapper for the RTOS
delivered together with the modeling tool,

. Common Media Drivers (CMDs), a set of hardware
driver components delivered by the project,

. Common Media Platform (CMP), a set of compo-
nents reusable on several hardware platforms and
for several DVB standards (this was developed in
the project), and

. Proprietary API (PAPI), the adaptation layer for a
specific DVB standard (these components were
developed in the project).

Each component was modeled as a package that was to
contain the classes that realized the component. Each of
these packages was placed in a package representing one of
the layers PAPI, CMP, or CMD. The architects modeled the
system down to the component packages; then, it was the
job of the component designer to define the classes inside
the component package.

4.6.2 Architectural Design Rules

A number of patterns and rules were to be followed when
the components in the model were designed. To support
these patterns and rules, an architecture package with an
executable framework was developed as a part of the
system model. Fig. 6 shows a UML class diagram, taken
from the system model, showing the classes in this
framework. The classes are described with the following
text in the architecture document:

. arcComponentRegistry. The main task for the
arcComponentRegistry is to be the resource provi-
der for and of all arcComponents in a layer. The
system’s layer dependencies are maintained via its
access to other arcComponentRegistrys. This is

basically the dispatcher in a Client-Dispatcher-Server
pattern; see [13].

. arcComponentUser. Being an arcComponentUser is
the only way of retrieving another component. This
is basically the client in a Client-Dispatcher-Server
pattern; see [13].

. arcComponent. This is the basic logical architectural
building block. This is basically the server in a Client-
Dispatcher-Server pattern; see [13].

. arcComponentFactory. The arcComponentFactory
implements the instantiation rules of arcCompo-
nents. There is at least one of these for each concrete
specialization of arcComponent in the system. All
arcComponentFactories are encapsulated by an
arcComponentRegistry.

. arcProfile. arcProfile is the “root” of the system
configuration and could be viewed as an instance of
the reference architecture.

. arcNotifyer. The arcNotifyer notifies its attached
arcListeners of important events. This is basically the
publisher in a Publisher-Subscriber pattern; see [13].

. arcListener. The arcListener registers to an arcNo-
tifyer to become notified of important events. This is
basically the subscriber in a Publisher-Subscriber
pattern; see [13].

. arcLocked. This is a basic resource locking mechan-
ism (semaphore type). It is primarily intended for
transaction locks on shared resources.

. arcLockedUser. This is the interface required by an
arcLocked component.

. arcPort. An arcPort is a system resource locked to
one user at a time. The main purpose of a port is to
transmit data to and/or from its user.

90 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. 1, JANUARY/FEBRUARY 2009

Fig. 6. Executable framework of the architecture.

. arcPortUser. This is the interface required by an
arcPort component.

In principle, the framework contained abstract base

classes representing the core abstractions of the system,

relations between them, and operations that were to be

overridden in specializations of the base classes. The

framework also contained full implementations of some

basic mechanisms that operated solely on the level of the

abstract base classes, such as interprocess resource locking

and component registry handling (registration, allocation,

and deallocation).
Unfortunately, the project could not fully capture the

architecture in a formal model. It was necessary to use

natural language to express the rules on how to use the

architectural framework to design the components in the

architecture. There were more than 60 rules that had to be

followed. Below is a small representative subset of these

rules taken directly from the architecture rule document:

. “Any arcComponent with behavior similar to an
arcPort should be a specialization of arcPort.”

. “All specializations of arcPort may have one over-
loaded method for each of the methods Open(),
Close(), and Write().”

. “All specializations of arcPort may have several
methods for the method Ctrl(). These methods shall
be named as ctrl_<specific_name> and may not
change the parameter list of the base class, except for
specializations of the parameter classes given for the
base class. However, a method may omit the second
(parameters) parameter.”

. “arcPort::Write() shall be used to stream data to a
port’s data output stream.”

. “arcPort::Ctrl() shall be used to control and manip-
ulate a port’s properties.”

. “All specializations of arcPort must use its parent’s
implementation of the base-class method for their
respective purposes. “

. “All specializations of arcPort require a specializa-
tion of the arcPortUser interface.”

. “All specializations of the arcPortUser interface base
class may have one overloaded method for each of
the methods RxReady(), TxDone(), and GetMem().”

. “All specializations of the arcPortUser interface base
class shall have one overloaded CtrlAck() method
for each of the asynchronous ctrl_<name> methods.”

4.6.3 Providing Example Components

To guide the developers in how to develop the components

using the architectural framework, a few example compo-

nents were also developed by the architects as a part of the

model:

. a component showing how to realize the “pipes and
filter” pattern,

. a component showing how to use interrupts, and

. a component showing how to design a “port”
component, which is a specialization of the arcPort
component (this example was, however, never
completed).

In addition to showing the design, the examples also
showed how to use different diagrams to capture the
design.

4.7 Manual Reviews of Architectural Conformance

Using natural language to describe architectural design
rules meant that the project had to rely heavily on manual
reviews to enforce conformance with the architecture.
Performing these reviews was a heavy burden for the
architects; it took almost all of their time during the first
12 months of development after the first release of the
architecture.

The rules proved to be ambiguous and hard to
comprehend and thus prone to different interpretations.
Several developers reported having a hard time trying to
understand and follow all of the detailed rules. This was
manifested by the fact that major corrections were fre-
quently needed after reviews, as shown by the review
protocols. Sometimes, this meant that a lot of reworking had
to be done since reviews were often held when design had
continued too long. This was caused by work overload on
the architects, which in turn was caused by a lot of effort
expended on reviewing the designs generated by the
different teams. The progress reports show that it was
common that architectural reviews were actually done after
a component was completed and tested, which was in
violation of the rules that stated that the component had to
pass the review before the detailed design was done.

5 CONCLUSIONS

Architectural design rules are an important part of the
architecture, and there are no suggestions on how to model
them in the current body of literature. The inability to
formalize the architectural design rules leads to a need for
manual enforcement of them. The research presented here
shows that this is an error-prone and time-consuming task
that takes most of the effort of the architects during the
construction-intensive phases of a project. This problem
exists in traditional document-based development, as well
as in MDD, but it is more apparent and acute in MDD. This
is because MDD has been able to automate the step from
detailed design to implementation, eliminating time-con-
suming coding and code reviews. However, MDD has not
been able to automate enforcement of the architecture on
the detailed design due to the inability to model architec-
tural design rules. The presented case shows that the
inability to model architectural design rules makes archi-
tectural enforcement a bottleneck in MDD projects. This
leads to a plethora of problems, including the following:

. Stalled detailed design. The design teams have to
wait for the architects to review their overall design
before they can dig deeper into the design.

. Premature detailed design. Design teams start
detailing their design before their overall design is
approved by the architect, with the risk that they
will have to redo much work after the review.

. Low review quality. The reviews are of low quality,
leading to problems later in the project.

MATTSSON ET AL.: LINKING MODEL-DRIVEN DEVELOPMENT AND SOFTWARE ARCHITECTURE: A CASE STUDY 91

. Poor communication of the architecture. The
architects have no time to handle the communication
with the design teams regarding architectural inter-
pretations or problems; problems are “swept under
the carpet.”

The implications for theory are that there is a need for

further research to find ways of modeling architectural

design rules in such a way that they are both amenable to

automatic enforcement on the detailed design and easy to

understand and use by both architects and developers. The

implications for practice are that until there is support for

automatic enforcement of architectural design rules, extra

resources are needed for architectural reviews. This has to

be taken into account in the planning and in the

architectural work practices. Although the architectural

design is inherently a task for a relatively small group, it

should be possible to delegate the architectural reviews to a

larger group. This would give time for the architects to

concentrate on the core architectural tasks: designing,

communicating, and maintaining the architecture.

ACKNOWLEDGMENTS

This research has been financially supported by the ITEA

project Co-development using inner and Open source in

Software Intensive products (COSI) (www.itea-cosi.org)

through Vinnova (www.vinnova.se) and also by funding

from the Science Foundation Ireland (www.sfi.ie).

REFERENCES

[1] P. America, E. Rommes, and H. Obbink, Multi-View Variation
Modeling for Scenario Analysis, 2004.

[2] C. Atkinson and T. Kuhne, “Model-Driven Development: A
Metamodeling Foundation,” IEEE Software, vol. 20, no. 5, pp. 36-
41, Sept.-Oct. 2003.

[3] P. Baker, L. Shiou, and F. Weil, “Model-Driven Engineering in a
Large Industrial Context—Motorola Case Study,” Proc. Eighth Int’l
Conf. Model Driven Eng. Languages and Systems, pp. 476-491, 2005.

[4] K. Balasubramanian, A. Gokhale, G. Karsai, J. Sztipanovits, and S.
Neema, “Developing Applications Using Model-Driven Design
Environments,” Computer, vol. 39, no. 2, pp. 33-40, Feb. 2006.

[5] R.L. Baskerville, “Investigating Information Systems with Action
Research,” Comm. AIS, vol. 2, p. 4, 1999.

[6] L. Bass, P. Clements, and R. Kazman, Software Architecture in
Practice, second ed. Addison-Wesley, 2003.

[7] I. Bayley, “Formalising Design Patterns in Predicate Logic,” Proc.
Fifth IEEE Int’l Conf. Software Eng. and Formal Methods, pp. 25-36,
2007.

[8] P. Bengtsson and J. Bosch, “Scenario-Based Software Architecture
Reengineering,” Proc. Fifth Int’l Conf. Software Reuse, pp. 308-317,
1998.

[9] J. Bosch, Design and Use of Software Architectures: Adopting and
Evolving a Product-Line Approach. Addison-Wesley, 2000.

[10] J. Bosch and P. Molin, “Software Architecture Design: Evaluation
and Transformation,” Proc. IEEE Conf. and Workshop Eng. of
Computer-Based Systems, pp. 4-10, 1999.

[11] K. Braa and R. Vidgen, “Interpretation, Intervention, and
Reduction in the Organizational Laboratory: A Framework for
In-Context Information System Research,” Accounting, Manage-
ment and Information Technologies, vol. 9, pp. 25-47, Jan. 1999.

[12] K. Braa and R. Vidgen, “Research: From Observation to Interven-
tion,” Planet Internet, K. Braa, C. Sørenssen, and B. Dahlbom, eds.,
pp. 251-276, Studentlitteratur, 2000.

[13] F. Buschmann, Pattern-Oriented Software Architecture: A System of
Patterns. John Wiley & Sons, 1996.

[14] A.H. Eden, “A Theory of Object-Oriented Design,” Information
Systems Frontiers, vol. 4, pp. 379-391, 2002.

[15] E. Gamma, Design Patterns : Elements of Reusable Object-Oriented
Software. Addison-Wesley, 1995.

[16] J. Greenfield and K. Short, Software Factories: Assembling Applica-
tions with Patterns, Models, Frameworks, and Tools. John Wiley &
Sons, 2004.

[17] B. Hailpern and P. Tarr, “Model-Driven Development: The Good,
the Bad, and the Ugly,” IBM Systems J., vol. 45, pp. 451-461, 2006.

[18] C. Hofmeister, R. Nord, and D. Soni, Applied Software Architecture.
Addison-Wesley, 2000.

[19] IEEE Recommended Practice for Architectural Description of Software-
Intensive Systems. IEEE, 2000.

[20] A. Jansen and J. Bosch, “Software Architecture as a Set of
Architectural Design Decisions,” Proc. Fifth Working IEEE/IFIP
Conf. Software Architecture, pp. 109-120, 2005.

[21] A. Jansen, J. van der Ven, P. Avgeriou, and D.K. Hammer, “Tool
Support for Architectural Decisions,” Proc. Sixth Working IEEE/
IFIP Conf. Software Architecture, pp. 44-53, 2007.

[22] G. Karsai, J. Sztipanovits, A. Ledeczi, and T. Bapty, “Model-
Integrated Development of Embedded Software,” Proc. IEEE,
vol. 91, pp. 145-164, 2003.

[23] N.F. Kock, R.J. McQueen, and J.L. Scott, “Can Action Research Be
Made More Rigorous in a Positivist Sense? The Contribution of an
Iterative Approach,” J. Systems and Information Technology, vol. 1,
pp. 1-24, 1997.

[24] P. Kruchten, “An Ontology of Architectural Design Decisions in
Software Intensive Systems,” Proc. Second Groningen Workshop
Software Variability, pp. 54-61, 2004.

[25] P. Kruchten, The Rational Unified Process: An Introduction, third ed.
Addison-Wesley, 2004.

[26] P. Kruchten, P. Lago, and H. van Vliet, “Building Up and
Reasoning about Architectural Knowledge,” Proc. Second Int’l
Conf. Quality of Software Architectures, pp. 43-58, 2006.

[27] P.B. Kruchten, “The 4+1 View Model of Architecture,” IEEE
Software, vol. 12, no. 6, pp. 42-50, Nov. 1995.

[28] F. Lau, “A Review on the Use of Action Research in Information
Systems Studies,” Proc. IFIP TC8 WG 8.2 Int’l Conf. Information
Systems and Qualitative Research, A.S. Lee, J. Liebenau, and
J.I. DeGross, eds., pp. 31-68, 1997.

[29] A. Lauder and S. Kent, “Precise Visual Specification of Design
Patterns,” Proc. 12th European Conf. Object-Oriented Programming,
1998.

[30] A.S. Lee and R.L. Baskerville, “Generalizing Generalizability in
Information Systems Research,” Information Systems Research,
vol. 14, pp. 221-243, Sept. 2003.

[31] K. Lewin, Resolving Social Conflicts: Selected Papers on Group
Dynamics. Harper & Row, 1948.

[32] Y. Levy and T.J. Ellis, “A Systems Approach to Conduct an
Effective Literature Review in Support of Information Systems
Research,” Informing Science J., vol. 9, pp. 181-212, 2006.

[33] J.K.H. Mak, C.S.T. Choy, and D.P.K. Lun, “Precise Modeling of
Design Patterns in UML,” Proc.. 26th Int’l Conf. Software Eng.,
pp. 252-261, 2004.

[34] N. Medvidovic, E.M. Dashofy, and R.N. Taylor, “Moving
Architectural Description from under the Technology Lamppost,”
Information and Software Technology, vol. 49, pp. 12-31, 2007.

[35] N. Medvidovic, D.S. Rosenblum, D.F. Redmiles, and J.E. Robbins,
“Modeling Software Architectures in the Unified Modeling
Language,” ACM Trans. Software Eng. and Methodologies, vol. 11,
pp. 2-57, 2002.

[36] N. Medvidovic and R.N. Taylor, “A Classification and Compar-
ison Framework for Software Architecture Description Lan-
guages,” IEEE Trans. Software Eng., vol. 26, no. 1, pp. 70-93, Jan.
2000.

[37] T. Mikkonen, “Formalizing Design Patterns,” Proc. 20th Int’l Conf.
Software Eng., pp. 115-124, 1998.

[38] T. Mikkonen, R. Pitkanen, and M. Pussinen, “On the Role of
Architectural Style in Model Driven Development,” Proc. First
European Workshop Software Architecture, pp. 74-87, 2004.

[39] H. Mintzberg, “An Emerging Strategy of “Direct” Research,”
Administrative Sciences Quarterly, vol. 24, pp. 582-589, Dec. 1979.

[40] MDA Guide Version 1.0.1, OMG, omg/2003-01-06, 2003.
[41] Unified Modeling Language: Superstructure, OMG, formal/2007-02-

05, 2007.
[42] D.E. Perry and A.L. Wolf, “Foundations for the Study of Software

Architecture,” ACM SIGSOFT Software Eng. Notes, vol. 17, pp. 40-
52, 1992.

92 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. 1, JANUARY/FEBRUARY 2009

[43] A. Ran, “ARES Conceptual Framework for Software Architec-
ture,” Software Architecture for Product Families: Principles and
Practice, M. Jazayeri, A. Ran, and F. van der Linden, eds., pp. 1-29,
Addison-Wesley, 2000.

[44] D.C. Schmidt, “Model-Driven Engineering,” Computer, vol. 39,
no. 2, pp. 25-31, Feb. 2006.

[45] B. Selic, “The Pragmatics of Model-Driven Development,” IEEE
Software, vol. 20, no. 5, pp. 19-25, Sept./Oct. 2003.

[46] M. Shaw, R. DeLine, D.V. Klein, T.L. Ross, D.M. Young, and G.
Zelesnik, “Abstractions for Software Architecture and Tools to
Support Them,” IEEE Trans. Software Eng., vol. 21, pp. 314-335,
1995.

[47] D. Soni, R.L. Nord, and C. Hofmeister, “Software Architecture in
Industrial Applications,” Proc. 17th Int’l Conf. Software Eng., pp.
196-207, 1995.

[48] M. Staron, “Adopting Model Driven Software Development in
Industry—A Case Study at Two Companies,” Proc. Ninth Int’l
Conf. Model Driven Eng. Languages and Systems, pp. 57-72, 2006.

[49] J.P. Tolvanen and S. Kelly, “Defining Domain-Specific Modeling
Languages to Automate Product Derivation: Collected Experi-
ences,” Proc. Ninth Int’l Conf. Software Product Lines, pp. 198-209,
2005.

[50] J. Tyree and A. Akerman, “Architecture Decisions: Demystifying
Architecture,” IEEE Software, vol. 22, pp. 19-27, 2005.

[51] G. Walsham, Interpreting Information Systems in Organizations. John
Wiley & Sons, 1993.

[52] F. van der Linden, J. Bosch, E. Kamsties, K. Kansala, and H.
Obbink, “Software Product Family Evaluation,” Proc. Third Int’l
Conf. Software Product Lines, pp. 110-129, 2004.

[53] R. Wojcik, F. Bachmann, L. Bass, P. Clements, P. Merson, R.L.
Nord, and B. Wood, “Attribute-Driven Design (ADD), Version
2.0,” Technical Report CMU/SEI-2006-TR-023, Software Eng. Inst.,
Carnegie Mellon Univ., Nov. 2006.

[54] R.K. Yin, Case Study Research: Design and Methods, second ed. Sage
Publications, 1994.

[55] U. Zdun and P. Avgeriou, “Modeling Architectural Patterns Using
Architectural Primitives,” Proc. 20th Ann. ACM SIGPLAN Conf.
Object Oriented Programming, Systems, Languages, and Applications,
2005.

Anders Mattsson received the MSc degree
from the Chalmers University of Technology,
Sweden, in 1989. He then worked for two years
as a software designer at Volvo Data AB,
followed by one year as a system designer at
Saab Instruments AB. Since then, he has been
with Combitech AB, where he currently serves
as the lead engineer in software architecture and
model-driven development. His research inter-
ests include software architecture and model-

driven development in the context of embedded real-time systems. He is
a member of the IEEE and the IEEE Computer Society.

Björn Lundell received the PhD degree from
the University of Exeter in 2001. He has been a
staff member at the University of Skövde since
1984. He has been researching the open source
phenomenon for a number of years. He co-led a
work package in the EU FP6 CALIBRE project
from 2004 to 2006. He is currently the technical
manager in the industrial (ITEA) research project
COSI (2005-2008), involving heterogeneous
distributed development and analysis of the

adoption of open source practices within companies. His research is
reported in more than 50 publications in a variety of international
journals and conference proceedings. He is a founding member of the
IFIP Working Group 2.13 on Open Source Software and the founding
chair of Open Source Sweden, an industry association established by
Swedish open source companies. He is the organizer of the Fifth
International Conference of Open Source Systems (OSS 2009), which is
to be held in Skövde, Sweden. In addition, his research has also
included fundamental research on evaluation and associated method
support. He is a member of the IEEE and the IEEE Computer Society.

Brian Lings was with the University of Queens-
land, Australia, for a number of years. He then
joined the Department of Computer Science at
the University of Exeter, becoming its first
elected head of department. He is now a
member of the academic staff of the University
of Skövde, Sweden, and the information sys-
tems director at Certus Technology Associates,
United Kingdom. Certus Technology Associates
uses an open source tool chain for the model-

driven development of software product lines. He chaired the steering
group of the British National Conference on Databases for three years,
from 2004 until 2006.

Brian Fitzgerald holds an endowed professor-
ship, the Frederick A Krehbiel II Chair in
Innovation in Global Business and Technology,
at the University of Limerick, Ireland, where he is
also the research leader for global software
development at Lero—the Irish Software En-
gineering Research Centre. His publications
include 10 books and more than 100 papers in
leading international journals and conference
proceedings. Having worked in industry prior to

taking up an academic position, he has more than 20 years experience
in the software field.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

MATTSSON ET AL.: LINKING MODEL-DRIVEN DEVELOPMENT AND SOFTWARE ARCHITECTURE: A CASE STUDY 93

