
10

An Approach for Modeling Architectural Design Rules in UML and its
Application to Embedded Software

ANDERS MATTSSON, Combitech AB, Sweden and University of Limerick, Ireland
BRIAN FITZGERALD, University of Limerick, Ireland
BJÖRN LUNDELL, University of Skövde, Sweden and University of Limerick, Ireland
BRIAN LINGS, University of Skövde, Sweden

Current techniques for modeling software architecture do not provide sufficient support for modeling archi-
tectural design rules. This is a problem in the context of model-driven development in which it is assumed
that major design artifacts are represented as formal or semi-formal models. This article addresses this
problem by presenting an approach to modeling architectural design rules in UML at the abstraction level
of the meaning of the rules. The high abstraction level and the use of UML makes the rules both amenable
to automation and easy to understand for both architects and developers, which is crucial to deployment in
an organization. To provide a proof-of-concept, a tool was developed that validates a system model against
the architectural rules in a separate UML model. To demonstrate the feasibility of the approach, the archi-
tectural design rules of an existing live industrial-strength system were modeled according to the approach.

Categories and Subject Descriptors: D.2.11 [Software Engineering]: Software Architectures—Languages;
D.2.2 [Software Engineering]: Design Tools and Techniques—Computer-aided software engineering
(CASE); Object-oriented design methods; D.2.1 [Software Engineering]: Requirements/Specifications—
Methodologies; Tools

General Terms: Design, Documentation, Human Factors

Additional Key Words and Phrases: Model-driven development (MDD), model-driven engineering (MDE),
embedded software development

ACM Reference Format:
Mattsson, A., Fitzgerald, B., Lundell, B., and Lings, B. 2012. An approach for modeling architectural de-
sign rules in UML and its application to embedded software. ACM Trans. Softw. Eng. Methodol. 21, 2,
Article 10 (March 2012), 29 pages.
DOI = 10.1145/2089116.2089120 http://doi.acm.org/10.1145/2089116.2089120

1. INTRODUCTION

A basic premise of model-driven development (MDD) [Schmidt 2006] is to capture all
important design information in a set of formal or semi-formal models that are auto-
matically kept consistent by tools. The purpose is to raise the level of abstraction at
which the developers work and to eliminate time-consuming and error-prone manual
work in maintaining consistency between different design artifacts such as UML di-
agrams and code. An important design artifact in any software development project

This research was financially supported by the ITEA project MoSiS (www.itea-mosis.org) through Vinnova
(www.vinnova.se) and also by funding from Science Foundation Ireland to Lero (www.sfi.ie).
Authors’ addresses: A. Mattsson, Hyacintvägen 4, SE-523 33 Ulricehamm, Sweden; email:
ajmattsson@gmail.com; B. Fitzgerald, Lero – the Irish Software Engineering Research Centre, Uni-
versity of Limerick, Ireland; email: bf@ul.ie; B. Lundell and B. Lings, University of Skövde, P.O. Box 408,
SE-541 28 Skövde, Sweden; email: {bjorn.lundell, brian.lings}@his.se.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permission may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701, USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2012 ACM 1049-331X/2012/03-ART10 $10.00

DOI 10.1145/2089116.2089120 http://doi.acm.org/10.1145/2089116.2089120

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 2, Article 10, Publication date: March 2012.

10:2 A. Mattsson et al.

is the software architecture [Bass et al. 2003]. The purpose of the architecture is to
guide and control the design of the system so that it meets its quality requirements.
A common way of capturing the architecture in MDD projects is to put the high-level
structure in the form of packages and components with interfaces in the system model,
together with a framework implementing a communication infrastructure used by the
components [Mattsson et al. 2009]. This is, however, not enough; we also need to
specify rules as to what kinds of component to put in different layers and how these
are supposed to use the infrastructure. We call these rules architectural design rules
[Mattsson et al. 2009]. The current state of practice is to express these rules in in-
formal text for the developers to follow. This means that manual reviews have to be
used to check that the rules have been followed during detailed design. If we could
model architectural design rules in a form that could be interpreted by tools, and at
the same time be easily understood by both architects and developers, we would be
able to eliminate error-prone and time-consuming manual work.

In this article we present an approach to solving this problem by using the well-
known modeling language UML [OMG 2009] to define architectural design rules at
the meta-model level in an intuitive way. To verify that the approach can be auto-
mated, a tool has been built that checks that a system model conforms to architectural
design rules modeled according to the approach. To demonstrate the applicability of
the approach to real systems development, the architectural design rules of an already
developed real-world embedded system have been modeled according to the approach.

The rest of this article is organized as follows. In the next section we present the
background motivating the research. In Section 3 we introduce a fictional but realistic
example to illustrate the problem of modeling architectural design rules and to intro-
duce our proposed solution. Thereafter, we present the research approach adopted for
the study. Following this, our findings are presented in three consecutive sections, cov-
ering the definition of the approach, tool support for automation, and the results from
applying the approach to a real-world system. Finally we discuss our conclusions and
the implications of the findings.

2. BACKGROUND

Our main research objective was to define an approach for modeling architectural de-
sign rules in an intuitive way while also stringent enough for automation. In order to
motivate and validate our research objective, we conducted a literature review in line
with Levy and Ellis [2006]. The review consisted of two consecutive phases, where the
first phase focused on the role of architectural design rules in the context of MDD. The
findings from this phase are presented in Section 2.1. Since we have reported these
findings in Mattsson et al. [2009], where a detailed discussion can be found, this part
is kept brief in the present article. Informed by the findings of the first phases the
second phase of the literature review focuse on techniques for using UML to constrain
UML modeling. The findings from this phase are presented in Section 2.2.

2.1 Architectural Design Rules and MDD

The purpose of the architecture is to guide and control the design of the system so that
it meets its quality requirements. Bass et al. [2003] are unequivocal in stating the
importance of an architectural approach:

“The architecture serves as the blueprint for both the system and the project devel-
oping it. It defines the work assignments that must be carried out by design and
implementation teams and it is the primary carrier of system qualities such as per-
formance, modifiability, and security – none of which can be achieved without a uni-
fying architectural vision. Architecture is an artefact for early analysis to make sure

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 2, Article 10, Publication date: March 2012.

An Approach for Modeling Architectural Design Rules in UML 10:3

that the design approach will yield an acceptable system. Moreover, architecture
holds the key to post-deployment system understanding, maintenance, and mining
efforts. In short, architecture is the conceptual glue that holds every phase of the
project together for all of its many stakeholders.”

A common understanding in architectural methods is that the architecture is repre-
sented as a set of components related to each other [Perry and Wolf 1992; Shaw et al.
1995]. The components can be organized into different views focusing on different
aspects of the system. Different methods propose different views; there may be a
view showing the development structure (e.g., packages and classes), a view showing
the runtime structure (processes and objects), and a view showing the resource usage
(processors and devices). In any view, each component is specified with the following:

— an interface that documents how the component interacts with its environment;
— constraints and rules that have to be fulfilled in the design of the component;
— allocated functionality; and
— allocated requirements for quality attributes.

A typical method of decomposition (see for instance, Bass et al. [2003], Wojcik et al.
[2006] and Bosch [2000]) is to select and combine a number of patterns that address
the quality requirements of the system and use them to divide the functionality in
the system into a number of elements. Child elements are recursively decomposed in
the same way down to a level where no more decomposition is needed, as judged by
the architect. The elements are then handed over to the designers who detail them to
a level where they can be implemented. For common architectural patterns such as
model-view-controller, blackboard, or layers [Buschmann 1996], this typically means
that we decompose our system into subsystems containing different kinds of classes
(such as models, views, and controllers). However the instantiation into actual classes
is often left to the detailed design, for two main reasons:

(1) Functionality will be added later, either because it was missed or because a new
version of the system is developed, so more elements will be added later that also
have to follow the design patterns decided by the architect.

(2) It is not an architectural concern. The concern of the architect is that the design
follow the selected architectural patterns and not to do the detailed design.

This means that a substantial part of the architecture consists of design rules as to
what kinds of elements, including behavioral and structural rules and constraints,
should be in a certain subsystem.

The importance of architectural design rules is also highlighted in current research
in software architecture that is focused on the treatment of architectural design
decisions as first-class entities [Jansen and Bosch 2005; Jansen et al. 2007; Kruchten
2004; Kruchten et al. 2006; Tyree and Akerman 2005], where architectural design
decisions impose rules and constraints on the design together with a rationale.
However, there is not yet any suggestion on how to formally model these design rules.
The current suggestion is to capture them in text and to link them to the resulting
design. This may be sufficient for rules stating the existence of elements (“ontocrisis”
in Kruchten [2004]) in the design, such as a subsystem or an interface, since the
architect can put the actual element (i.e., a certain subsystem) into the system model
at the time of the decision. It is however not sufficient for rules on potentially existing
elements (“diacrisis” in Kruchten [2004]) such as rules as to what kinds of elements,
including behavioral and structural rules and constraints, should be in a certain
subsystem, since the actual elements are not known when the design decision is made.

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 2, Article 10, Publication date: March 2012.

10:4 A. Mattsson et al.

Instead, the rule-based design occurs later in the detailed design phase, and involves
other persons, potentially even in a different version of the system.

As previously reported [Mattsson et al. 2009], there is no satisfactory solution to how
to model architectural design rules on potentially existing components in the current
literature.

— Approaches to MDD, such as OMG’s MDA [OMG 2003], domain specific modeling
(DSM) [Karsai et al. 2003; Tolvanen and Kelly 2005], and Software Factories
[Greenfield and Short 2004] from Microsoft do not address the problem of how to
represent architectural design rules.

— Numerous methods exist for architectural design such as ADD [Bass et al. 2003;
Wojcik et al. 2006]; RUP 4+1 Views [Kruchten 1995, 2004]; QASAR [Bengtsson
and Bosch 1998; Bosch 2000; Bosch and Molin 1999]; S4V [Hofmeister et al. 2000;
Soni et al. 1995]; BAPO/CAFCR [America et al. 2004; van Der Linden et al. 2004];
and ASC [Ran 2000]. Also, current research in software architecture is focused
on treating architectural design decisions as first class entities [Jansen and Bosch
2005; Jansen et al. 2007; Kruchten 2004; Kruchten et al. 2006; Tyree and Akerman
2005]. However, neither of these research streams provides any suggestion as to
how architectural design rules should be modeled, other than as informal text.

— Architectural description languages (ADL) [Medvidovic and Taylor 2000;
Medvidovic et al. 2002, 2007] (e.g., ACME, Aesop, C2, MeatH, AADL, SysML, and
UML) do not provide sufficient means to specify constraints or rules on groups
of conceptual components only partly specified by the architect where the actual
components are intended to be indentified and designed by developers in later
design phases.

The state of the art in embedded software development [Mattsson et al. 2009] is to
capture these rules in a text document. This means that we have to rely on manual
reviews to ensure that the detailed design follows the architectural design rules. As
a consequence, architectural enforcement becomes a bottleneck in MDD, where other
design activities have been automated. As earlier report [Mattsson et al. 2009], this
leads to a plethora of problems, including the following one.

(1) Stalled detailed design. The design teams have to wait for the architects to review
their overall design before they can dig deeper into the design.

(2) Premature detailed design. Design teams commence a detailed design before their
overall design is approved by the architect, with the risk that they will have to redo
much work after the review.

(3) Low review quality. Time pressures lead to a low quality of review, leading to
problems later in the project.

(4) Poor communication of architecture. The architects have no time to handle the
communication with the design teams regarding architectural interpretations or
problems; problems are “swept under the carpet.”

An architectural style (also known as architectural pattern) [Shaw and Garlan 1996]
is an idiomatic pattern of system organization. It is comparable to the solution part of
a certain kind of design pattern [Gamma 1995], specifying system wide design rules,
categorized as architectural patterns in Buschmann [1996].

The problem of modeling design rules has much in common with the problem of
modeling architectural styles or the solution part of a design pattern, in so far as it is
basically about specifying rules to follow in the design. There are a number of sugges-
tions on how to formally model design pattern specifications and architectural styles
[Bayley 2007; Eden 2002; France et al. 2004; Lauder and Kent 1998; Mak et al. 2004;

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 2, Article 10, Publication date: March 2012.

An Approach for Modeling Architectural Design Rules in UML 10:5

Fig. 1. Defining a stereotype Data Class in a UML profile.

Mikkonen 1998; Pahl et al. 2007; Zdun and Avgeriou 2005]. While some approaches
use mathematical formalisms such as predicate logic and set theory, others use UML,
applied at the meta-model level. Based on our experience, we believe that, in order
to be successful in practice, it is essential that architectural design rules are modeled
in such a way that they are both amenable to automatic enforcement of the detailed
design and easy to understand and use by both architects and developers. The latter
is important in order to avoid increasing the work of developing the rules; otherwise
there is a risk that the work burden is increased instead of decreased, even though the
enforcement is automated. Another important issue is that it should be possible to use
current mainstream modeling tools to model both the architectural design rules and
the system model so as to make it widely adoptable. Given that UML is probably the
most widely used modeling language in the embedded software industry, our choice
would therefore be to use UML to model architectural design rules for UML models.
Our approach is therefore based on the same idea as in Zdun and Avgeriou [2005] and
France et al. [2004], namely to use UML on the meta-model level to restrict the use of
UML in a system model. However, instead of using it to specify patterns, we use it to
specify architectural design rules.

2.2 Architectural Design Rules in an MDD context Using UML

The purpose of architectural design rules is to provide the necessary constraints for the
detailed design. In an MDD context where the detailed design is made in UML, this
means that the architectural design rules must be modeled in such a way that they re-
strict how UML is used. Furthermore, to suit our purpose, it must be possible to auto-
matically enforce the restrictions on the detailed design or to automatically check that
the restrictions are followed in the detailed design. Within UML, a profile provides
a mechanism to restrict the use of UML [Fuentes-Fernández and Vallecillo-Moreno
2004]. A UML profile contains a number of stereotypes where each stereotype extends
one or more UML meta-classes with new properties and constraints. The stereotype
can then be applied to model elements of the extended meta-class in a model using the
profile. In Figure 1, an example is given where we define a stereotype Data Class that
extends the UML meta-class Class. The stereotype adds the constraint that classes
with the stereotype Data Class cannot have any operations. The constraint is ex-
pressed in OCL [OMG 2003], a language for specifying constraints and queries on
models in UML and other MOF-based [OMG 2006] languages defined by OMG (MOF
is a subset of UML intended for meta-modeling). The application of this stereotype is
shown in Figure 2 where we define a class Position with the stereotype Data Class.

There are, however, at least two problems with defining profiles in this way. The
first is that it requires detailed knowledge of the UML meta-model (the model defining
the abstract syntax of UML), which is quite complex and beyond what can be expected
from a typical architect or developer; it would likely impede widespread adoption of
the approach [Conboy and Fitzgerald 2010]. For example, the very simple constraint
in Figure 1 requires the knowledge that operation has the role name ownedOperation

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 2, Article 10, Publication date: March 2012.

10:6 A. Mattsson et al.

Fig. 2. Defining a class position of the stereotype Data Class in a UML model.

Fig. 3. Definition of the architectural design rule example using OCL.

in its association to Class in the UML meta-model. The second problem is that the
OCL expressions become quite complex, even for quite simple constraints. Consider
the following example rule (rule S4 in the illustrating example in Section 3).

A sensor may only have associations to In Port Ifc and Data Items. These
associations shall only be navigable from the sensor.

Using the standard approach for defining profiles we get the constraint definition for
the Simulator stereotype shown in Figure 3. As can be seen, this involves a great deal
of detailed knowledge of the UML meta-model.

Another possibility is to make a new meta-model with classes that extend the
classes in the UML meta-model through generalizations. But, as illustrated in
Figure 4, this is very similar to the approach using a profile, in that we still need to
specify almost the same OCL constraints as when using a profile. The only benefit
is that we avoid the navigation between the stereotypes and the elements in the
meta-model (e.g., self.base Class and type.extension Data Type).
What is needed is a technique to specify the constraints in a more intuitive way. In
Fuentes-Fernández and Vallecillo-Moreno [2004], a technique using a meta-model as
a precursor to a UML profile specification is suggested. According to this approach,
stereotypes are defined by classes in a meta-model where the relations between the
classes impose constraints on the stereotypes. Using an approach like this, the above
example would be expressed according to Figure 5.

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 2, Article 10, Publication date: March 2012.

An Approach for Modeling Architectural Design Rules in UML 10:7

Fig. 4. Definition of the architectural design rule example using specialisation of the UML meta-model.

Fig. 5. Capturing the architectural design rule example using the approach suggested in Fuentes-
Fernández and Vallecillo-Moreno [2004].

This approach has the benefit that it is more intuitive—it is both easier to model
and to understand. Another benefit is that it does not contain any details from the
UML meta-model, so it does not require any knowledge of that. The drawback of
this approach is that it lacks rigor on how to transform it to a UML profile. In the
context, addressed in Fuentes-Fernández and Vallecillo-Moreno [2004], this is not a
problem because the purpose of the model is just to aid in the process of designing a
profile, not to be automatically transformed into a profile. For our purpose, a detailed
specification as to how it may be transformed to a UML profile is necessary, to the
level where it could be implemented in a tool. To that purpose, we have defined a set
of transformation rules, described in Section 5.

3. AN ILLUSTRATIVE EXAMPLE

In this section we introduce a fictional but realistic example to illustrate the problem
of modeling architectural design rules and to introduce our proposed solution to that
problem.

Our fictional system is a product line of washing machines. The product line consists
of a wide variety of washing machines, from simple cheap machines with a minimum
of features to advanced machines with user access control, monitored and controlled
over the internet for industry and public self-service laundries. Since there is a high

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 2, Article 10, Publication date: March 2012.

10:8 A. Mattsson et al.

degree of functional commonality between different machines, it was decided to build
a common model from which software for all machines (existing and future) can be
generated. With this goal, there are a number of nonfunctional requirements that
must be addressed by the architectural design, such as the following.

(1) Performance scalability. In simple machines it should be possible to run the soft-
ware in a microcontroller with very limited performance and memory, while the
more advanced machines have fully featured CPU’s with hundreds of megabytes
of memory.

(2) IO hardware variability. Since the availability and price of IO hardware varies
over time, change of IO hardware should require minimal effort.

(3) Communication protocols variability. Since different machines use different pro-
tocols for communication with external systems now and in the future, change of
communication protocols should require minimal effort.

(4) Functional scalability. Since the functionality is highly variable, adding, removing,
and changing functionality, including beyond what is considered currently, should
require minimal effort.

(5) User interface variability. There is high variability in how the user controls the
machines, from simple variants with knobs and LEDs to touch screens for the
most advanced machines. Therefore, it should require minimal effort to change
the interface for the user, beyond the controls existing currently.

(6) Sensor and actuator variability. While some machines use actual sensors to mon-
itor water temperature and water level, others use time to estimate these values.
There are also different scalings between the sensor output and measured values
for different physical sensors and different machines, (e.g., for water level). De-
pending on the functionality of the machine, there are also different kinds of sensor
and actuators, for different machines (e.g., if the machine also has a tumble-drying
functionality or dirt-sensing capabilities). To cater for this variability, adding, re-
moving, or changing sensors and actuators should require minimal effort.

To handle these requirements, the following design principles have been decided an by
the architect.

(1) Performance scalability. No heavyweight functionality is required. For example, it
might have been sensible to use a database with remote accessibility to store the
data items, since this would have eliminated the need for implementing support
for remote accessibility. However, this would have made it impossible to run the
software on a microcontroller.

(2) IO hardware variability. The IO hardware is only accessible through a small sta-
ble set of IO interfaces. These interfaces are then implemented for the different
hardwares by different IO Ports.

(3) Communication protocol variability. This is handled by the same design principle
as used for handling the IO hardware variability. Different protocols are handled
by different IO Ports towards the same stable interface.

(4) Functional scalability. This is handled by not allowing any dependencies on or
between applications (e.g., washing program, remote monitoring, access control).
An application reads and writes to Data Items and IO Interfaces and may act as
an observer [Gamma 1995] on Data Items reacting to changes for these.

(5) User interface variability. This is handled by using the same principles for user
interface controllers as for the applications described above. A user interface con-
troller provides a mapping between a physical user interface and Data Items.

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 2, Article 10, Publication date: March 2012.

An Approach for Modeling Architectural Design Rules in UML 10:9

Fig. 6. High-level structure and framework in UML using the traditional way of modeling architecture.

(6) Sensor and actuator variability. This is handled by using the same principles for
sensors and actuators as for the applications described above. Sensors and actua-
tors provide a mapping between physical sensors or actuators and Data Items

In the following two sections we first show how an architecture that captures these
design principles would have been modeled in a traditional way and then using our
modeling approach.

3.1 Traditional Way of Modeling the Architecture

Traditionally, the architect would have documented the architecture according to these
design principles with a high-level structure and a support framework in UML, to-
gether with a set of rules expressed informally in text. This is exemplified with the
UML model in Figure 6, accompanied by a set of textual architectural design rules,
such as those below the figure.

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 2, Article 10, Publication date: March 2012.

10:10 A. Mattsson et al.

The following are some rules for Data Items.

D1. A Data Item is a class that reflects the state of the system or its environment that
is needed by an application. The intention is that the set of Data Items will be
stable over time.

D2. A Data Item must inherit Infrastructure::Subject.
D3. A Data Item must be defined in the Data Items package.
D4. The only public operations of a Data Item must be set and get operations to read

and write data stored by the class.
D5. A Data Item may be a composition of Data Items.
D6. A set operation for a Data Item must always end by calling its Notify operation.

And these are some rules for sensors.

S1. A sensor is typically responsible for reading the value from a physical sensor scal-
ing it and writing the value to a Data Item. Some sensors may however not be
connected to a physical sensor, but use indirect measures such as heating effect
and time to estimate a value to write to the Data Item.

S2. A sensor must be defined in the Sensors package.
S3. A sensor may inherit Infrastructure::Observer to be able to react to changes in

Data Items, for instance to activate or deactivate itself.
S4. A sensor may only have associations to In Port Ifc and Data Items. These associ-

ations must only be navigable from the sensor.
S5. A sensor may not have any public operations or attributes.
S6. A sensor must periodically update its Data Item.

In addition, there would be corresponding rules for Actuators, UI Controllers, Appli-
cations, and IO Ports.

3.2 Modeling the Architecture According to our Approach

In our approach, instead of using informal text, the architectural design rules are
modeled in UML. Since UML (and any other OO language) is well suited to define
structural relationships (such as, for instance, “every country has one capital city” used
in many introductory courses in OO), this can be done in a straightforward way for
rules such as the ones in the previous section. Using this approach the architectural
rules for Data Items above can be modeled as in Figure 7. In the figure it is indicated
how each rule is modeled by the Dx labels. For example, the rule D2, stating that a
Data Item will inherit Subject, is modeled by associating a Data Item to one Subject
with an association stereotyped with <<Generalization>>. A major principle is that
nothing that is not explicitly allowed is forbidden, so a Data Item may not have any
association other than compositions to other Data Items, and may not inherit anything
except a subject class.

We call the model where we model the architectural rules the architectural rules
model. It is important to realize that the classes in this model are at the meta-level
of the classes of the system model; that is, they define different kinds of classes
and constrain them. For instance, the association between Subject and Observer
in Figure 7 means that a Subject kind of class will have any number of Observer
kinds of classes. An operation or an attribute in a class in this model means that
a class of the corresponding kind in the system model must have an operation or
attribute with the same characteristics as this operation or attribute. To allow for
variations, wild cards can be used in attribute and operation definitions, where ”@”

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 2, Article 10, Publication date: March 2012.

An Approach for Modeling Architectural Design Rules in UML 10:11

Fig. 7. Architectural design rules for Data Items modeled according to our approach.

or “%” stands for any character sequence, and “%” has the additional meaning that
an element with “%” in its name may be repeated any number of times, including
zero. A full definition of the constructs of the architectural rules model is presented in
Section 5.

In the system model we use UML stereotypes to show the kind, corresponding to the
classes in the architectural rules model, of an element. For example, in Figure 8 it can
be seen that the class Subject has the stereotype <<Subject>>, meaning that it has
to comply with the constraints defined by the Subject class in the architectural rules
model. Figure 8 shows the high-level structure and framework classes modeled in the
system model by the architect. The only difference to the one in Figure 6 modeled
according to the traditional approach, is the stereotypes attached to the packages and
classes. Since the architect models the high-level structure of the system, the rules
restrict the developers as to which stereotypes to use in which package. For instance,
in a package with stereotype <<Data Items>, all classes must have the stereotype
<<Data Item>>. Figure 9 shows a number of Data Items modeled in the system
model following the rules of the architectural rules model in Figure 7. Any violations
to the rules are automatically detected and reported by the tool built as part of our
case study, described in Section 6.

An interesting observation in this example is that rule D1 is not modeled. The
reason is that it is too vague to be formalized; it requires the developer to exercise
judgement to follow it. In our experience, there are these kinds of architectural rules
in most systems, so 100% automation of the architectural reviews is not a realistic
goal. Nevertheless, we should be able to model and automatically enforce a majority of
the architectural rules, something which should have a major impact on development
efficiency.

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 2, Article 10, Publication date: March 2012.

10:12 A. Mattsson et al.

Fig. 8. High-level structure of the system model in UML using our approach.

4. RESEARCH APPROACH

There were three objectives of this research motivated by the lack of a satisfactory
solution on how to model architectural design rules and the need for automating the
enforcement of these in a practical situation, as discussed in Section 2:

(1) Define an approach for modeling architectural design rules in UML.
(2) Verify that the approach is stringent enough to be automated.
(3) Demonstrate that the approach is applicable to a real development project.

To achieve the first objective, that of defining the approach, a systematic literature
review presented in Section 2 was performed. The approach adopted was based on the
findings of the literature review, and was refined based on the activities undertaken to
achieve the second and third objectives above.

The second objective, to verify that the approach could be automated, was addressed
by developing a tool to automatically check that a system fulfilled the architectural

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 2, Article 10, Publication date: March 2012.

An Approach for Modeling Architectural Design Rules in UML 10:13

Fig. 9. Part of the detailed design for the Data Items package in the system model.

rules specified according to the approach. In addition, a MOFScript transformation
that transforms architectural rules defined according to our approach to OCL con-
straints in an architectural rules profile has been defined. This MOFScript transfor-
mation can be found in Appendix A.

To achieve the third objective, that of demonstrating the applicability of the ap-
proach, the architectural design rules from an existing, previously developed system,
were modeled according to the approach. The goal of this activity was to establish the
degree to which it enabled modeling of the architectural design rules. Specifically, we
searched for answers to the following two questions.

(1) To what extent could the specified rules be modeled?
(2) Were there certain kinds of rules that could not be modeled and if not, why not?

The system was selected based on the following criteria.

(1) The system had to have been developed using MDD.
(2) The system had to be an existing real system of significant size and with a suffi-

cient functionality to make it generally representative as a real-world embedded
system.

(3) The architecture, including the architectural design rules, had to be documented
to a level where it could be interpreted by the research team.

(4) The research team had to have good access to people who had first-hand knowledge
of the architecture, to be able to see beyond the documentation and to be able to
resolve any ambiguities.

The selected system, fulfilling these criteria, was a software platform for digital TV
set-top boxes for the DVB1 standard. The system had been developed by a project
that had been studied in an earlier case study by the research team, reported in
Mattsson et al. [2009], which meant that the team had good insight into the case. It
was developed using the modeling tool Rhapsody (version 4.x) from Telelogic [Telelogic
Rhapsody modeling], with all code generated from UML models in the tool, using C++

1Digital Video Broadcasting, http://www.dvb.org.

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 2, Article 10, Publication date: March 2012.

10:14 A. Mattsson et al.

as the action code language. The size of the software platform was approximately
350,000 eLOC in C++ and the effort to develop it was about 100 person years over a
24 month period. The architecture was documented partly in the system model and
partly in one manually written document. The system model contained a high-level
package structure and a framework of classes supporting the architectural design
rules. The document contained the architectural design rules. Finally, the researchers
had first-hand knowledge of the architecture, since the primary author of this article
was the technical manager of the project, responsible for work practices and tools.
The architecture was, however, developed by two other persons acting as architects.

The study was conducted by a systematic walkthrough reviewing the rules from the
architectural document in several iterations, gradually transforming them to modeling
constructs according to our approach.

5. AN APPROACH TO MODELING ARCHITECTURAL DESIGN RULES

In this section we present the definition of the approach for modeling architectural
design rules that was developed in response to our first research objective.

As motivated in Section 4, our approach is based on transforming design rules, mod-
eled in an architectural rules model, using UML, to a UML profile, applied to the
system model. The implication is that our approach to modeling architectural design
rules can be reduced to a set of transformations from constructs in the architectural
rules model to stereotypes with constraints in a UML profile, hereafter referred to
as the architectural rules profile. Therefore our approach is defined using such a set
of transformations. In this section we present these transformations in an informal
descriptive way, a formal definition in the form of a MOFScript transformation to a
UML profile and OCL constraints can be found in Appendix A1, available in the ACM
Digital Library.

The transformations are divided into two subsets, a general, complete transforma-
tion set and an additional UML-specific transformation set. The first transformation
set is general, in the sense that it is applicable to any meta-model modeled in MOF,
and not only to UML models. It is also complete, in the sense that it allows us to con-
strain any construction of any modeling language defined in MOF. However, using only
these general transformations, it is still hard to model certain types of architectural
rules commonly needed for UML models—for example, rules restricting UML associa-
tions. To ease the modeling of such rules, the additional UML, specific set of rules is
needed. This transformation set is, however, not complete, so the fundamental set is
still needed for completeness.

All examples illustrating the transformations in this section are taken from the
washing machine example introduced in Section 3.

5.1 General Transformations

This section defines a set of transformations from an architectural rules model to an
architectural rules profile defining constraints for types of classes in a system model.
The transformations are applicable to all MOF-based languages, not only UML. The
definitions refer to the generic architectural rules model in Figure 10, where C1 and
C2 are replaced by class names; M1 and M2 replaced by stereotypes; R1 and R2 are
replaced by role names; SR1 and SR2 are replaced by stereotypes; and Mu1 and Mu2
are replaced by multiplicities. In the transformations which follow, these conventions
are used.

— References to terms defined in the generic architecture model in Figure 10 are in
italics.

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 2, Article 10, Publication date: March 2012.

An Approach for Modeling Architectural Design Rules in UML 10:15

Fig. 10. A generic architectural rules model used in the definition of the transformations.

Fig. 11. Example of transformation according to transformation T1.

— The phrase “<<Cx>> element” shall be interpreted “element of stereotype Cx” or,
if Mx equals “metaclass,” “element of metaclass Cx” (where x is 1 or 2).

— The term “metaclass” in the transformations refers to a metaclass of the modeling
language that is constrained, for instance the metamodel for UML.

— The term “metamodel” in the transformations refers to the metamodel of the mod-
eling language that is constrained, for instance the metamodel for UML.

The transformations are as follows.

T1. A class named C1 with the stereotype M1 is transformed into a stereotype named
C1, extending the metaclass M1 unless transformation number T2, (below) ap-
plies. If M1 is undefined, then “Class” is assumed; see Figure 11 for an example.

T2. If M1 equals “metaclass” then C1 represents the class C1 in the language meta-
model (i.e., the UML metamodel) and is not transformed into anything in the
profile. This can be used to specify constraints in other stereotypes in respect to
these meta-classes; see Figure 12 for an example.

T3. If SR2 is the role in the language metamodel on the far end of an association
from the metaclass of C1 to the metaclass of C2 then the multiplicity of R2 for a
<< C2 >> element shall be constrained to Mu2 in stereotype << C1 >>.
An example is shown in Figure 12, where a <<Sensor>> class is constrained to
only have one <<SamplingPeriod>> attribute and no other attributes.

It is allowed to have several association ends matching the same meta-model as-
sociation end. In that case the multiplicity of the end with the most narrow type
scope is applied for a certain << C2 >> element. In the example in Figure 12
the multiplicity is “1” for an attribute with the stereotype <<SamplingPeriod>,
since this multiplicity is only applicable to attributes with stereotype
<<SamplingPeriod>> and the multiplicity of 0 is applicable to all attributes.

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 2, Article 10, Publication date: March 2012.

10:16 A. Mattsson et al.

Fig. 12. An example of using transformation T2, T3, and T4.

T4. If the name of an attribute A matches the name of an attribute of class M1 in the
meta-model, then it is transformed into a constraint on that attribute on allowed
values. The value of the attribute is constrained to match a regular expression
specified as the default value of the attribute.

An example is shown for the attribute name in Figure 12 where the name of the
<<SamplingPeriod>> attribute is constrained to be “SamplingPeriod.”

T5. If no match is found for A, then A is transformed into an attribute A of the
stereotype (tag-definition), thus defining a tagged value to be set in the model
element where the stereotype is applied.

T6. Any OCL constraint in the context of a class C1 is copied into the architectural
rules profile with the context of stereotype C1. This means that the constraints is
written the same way as when defining stereotypes directly in the profile.

Even though OCL expressions, as discussed in Section 3, are not suitable for
modeling architectural design rules in general, there is a need for them to express,
for instance, constraints on combinations of rules. For example, if we would like
to specify that a <<Sensor>> class has either a <<Sample>> operation or a
<<Trig>> operation, it could be done like this:

context Sensor
inv: self.base Class.ownedOperation.extension Sample.size()=1 xor
self.base Class.ownedOperation.extension Trig.size()=1

T7. A generalization relationship from a class C3 to a class C1 in the architectural
rules model is transformed to a generalization from stereotype <<C3>> to stereo-
type << C1 >> in the architectural rules profile as exemplified in Figure 13.
This means that stereotype << C3 > inherits all constraints from stereotype
<< C1 >> and that a << C3 >> class is also to be regarded as a << C1 >> class.

This set of transformations is general and complete in the sense discussed in what
follows.

— The transformation set is general. These transformations allow us to use a subset
of UML to constrain the usage of any modeling language defined in MOF, since

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 2, Article 10, Publication date: March 2012.

An Approach for Modeling Architectural Design Rules in UML 10:17

Fig. 13. An example of using transformation T7.

the transformations only assume that the modeling language is defined using MOF
and do not assume anything about the content in the meta-model (i.e., the UML
metamodel).

— The transformation set is complete. A model is an instance of its metamodel, which
means that any model element is an instance of a class in the metamodel. The only
things that may vary between two models of the same metamodel defined in MOF is
the number of instances of each metaclass, the values and multiplicities of the meta-
class attributes, and the links between the instances. Since these transformations
allow us to constrain allowed values and multiplicities for attributes and constrain
the types and multiplicities of associations, the set of transformations is complete
in the sense that it allows us to constrain anything that can vary between different
models of a certain meta-model defined in MOF.

By using only these transformations it is, still too complex to model constraints on
some common UML constructs such as associations, attributes, operations, and state
machines. For example, Figure 14 shows how the simple example rule S4 introduced
in Section 3 is modeled according to these transformations.
To overcome this problem we have defined a set of additional transformations that
makes it considerably simpler to specify certain constraints on UML models, common
within the embedded software domain; they are described in the next section.

5.2 Additional UML-Specific Transformations

This section defines a set of transformations, in addition to the general ones defined
in the previous section. The purpose of these transformations is to make it simpler
to describe frequently needed architectural rules on UML models that are hard to
describe using only the general transformations. These transformations override the
general transformations in cases where both a general and an additional UML-specific
transformation apply. The definitions refer to the generic architectural rules model in
Figure 15. In the definitions, the following conventions are used.

— References to terms defined in the generic architecture model in Figure 15 are in
italics.

— The phrase “<<Cx>> element” where x is 1 or 2 should be interpreted as “element
of stereotype Cx” or, if Mx equals “metaclass,” “element of metaclass Cx”.

Constraints on stereotype C1 is defined according to the following.

T8. If M1 equals “Package”and aggregation of R2 is “composite”: A << C1 >>
package is constrained to contain Mu2 number of << C2 >> elements. The
visibility of these elements must be the visibility of Mu2. Also, a << C1 >>

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 2, Article 10, Publication date: March 2012.

10:18 A. Mattsson et al.

Fig. 14. Capturing an association constraint in a meta-model using the general transformations.

Fig. 15. A generic architectural rules model used in the definitions of the transformations.

Fig. 16. Example of rules on package containment.

package is not allowed to have any packagedElements unless explicitly allowed
in the model. This transformation makes it easy to model rules on package
containment. An example is shown in Figure 16.

T9. << C1 >> elements are only allowed to have the associations, dependencies,
generalizations, and realizations explicitly allowed.

T10. If MA equals “Association”: A << C1 >> element must be associated with Mu2
number of << C2 >> elements. The association ends must have the same
navigability, aggregation (none, shared, or composite) and visibility as R1 and

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 2, Article 10, Publication date: March 2012.

An Approach for Modeling Architectural Design Rules in UML 10:19

Fig. 17. Example of rules on associations.

Fig. 18. Example of rules on generalizations, dependencies, and realizations.

R2. The association ends must also have qualifiers according to the qualifiers
of R1 and R2. The name and type of these must be according to the transfor-
mations for attributes specified in the following. The association must have the
stereotypes S1 to Sn. This transformation makes it easy to formulate rules on
associations; as, for instance, the example rule introduced in Section 4 can now
be modeled as shown in Figure 17. Contrast this with the model in Figure 14 to
see the difference from modeling using only the fundamental transformations.

T11. If MA equals “Dependency,” “Generalization,” or “Realization,” and the associa-
tion is only navigable from C1 to C2: A in << C1 >> element must have a rela-
tionship according to MA to Mu2 number of << C2 >> elements with stereotypes
S1 to Sn. Examples of these kinds of transformation are shown in Figure 18.

T12. If there are attributes A of C1 that starts with $ then, the following hold.
(a) all parts of the definition of an attribute of a << C1 >> class must match the

corresponding part of an A, where the wild card characters “@” and “%” in
any part of the definition of A can be replaced with any character sequence.

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 2, Article 10, Publication date: March 2012.

10:20 A. Mattsson et al.

Fig. 19. Example of rules on attributes.

Fig. 20. Example of rules on operations.

Parts of A not specified (as for instance, default value for Sampling Period in
Figure 19) are unconstrained.

(b) Every A must be matched by one attribute in a << C1 >> class. An
exception to this is if the name of A contains the wild card character “%”; in
this case any number of matches (including zero) is allowed.

(c) if the name of a type of A is identical to the name of a class C in the
architectural rules model, then the type of a matching attribute must be a
<<C>> element.

This transformation is exemplified in Figure 19.
T13. If there are operations O of C1 that start with $ then the following hold.

(a) All parts of the definition of an operation of a << C1 >> class must match
the corresponding part of an O, where, for each part of the definition, the wild
card characters “@” and “%” can be replaced with any character sequence.
Parts of O not specified (as, for instance, parameter directions for operations
in Figure 20) are unconstrained.

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 2, Article 10, Publication date: March 2012.

An Approach for Modeling Architectural Design Rules in UML 10:21

Fig. 21. Example on rules on state machines.

(b) This requirement holds for all parts of the definition of O defined in the
UML meta-model, such as, for instance, opaque behavior specified for the
operation.

(c) The character “%” in a parameter name means that the definition of this
parameter can be repeated any number of times, including zero. In these
parameter definitions “%” can be replaced with any character sequence.

(d) If the name of the type of O or a parameter of O is identical to the name
of a class B in the architectural rules model, then the type of matching
operations or parameters in the << C1 >> class must be of a <> Class.

(e) All O must be matched by one operation in a << C1 >> class. An exception
to this is if the name of O contains the wild card character “%”; in this case
any number of matches (including zero) is allowed.

This transformation is exemplified in Figure 20.
T14. If C1 has a state machine, then a << C1 >> class must have a state machine

where, for each region in C1, there must be an identical region in the <<C1>>
class. The wild card character “@” may be used in the transition definitions in C1
and will then be matched with any text string in the corresponding transition in
the state machine of a << C1 >> class. It is allowed to have additional regions
in the state machine of a << C1 >> class.

This transformation is exemplified in Figure 21. In this example a
<<Sensor>> class is constrained to have a top region exactly matching
the state machine for Sensor in the architectural rules model, which in ef-
fect forces Sensor classes to call the operation Sample() periodically with the
period specified by the attribute Sampling Period. A <<Sensor>> class may
have additional behavior specified in parallel regions to the one specified in
Sensor.

These additional UML-specific sets of transformations make it easy to specify con-
straints on, for instance, how different kinds of classes may be associated. To illustrate,
let us revisit the previously used example in Section 2.2.

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 2, Article 10, Publication date: March 2012.

10:22 A. Mattsson et al.

Fig. 22. Capturing the architectural design rule using the specialized additional transformations.

A sensor may only have associations to In Port Ifc and Data Items. These
associations shall only be navigable from the sensor.

This rule may now be modeled according to Figure 22,2 which is very close to the simple
(but only indicative) model in Figure 5, and significantly less complex than the model
in Figure 14, where only the general transformations were used.
These additional transformations also make it simple to specify other common con-
straints, such as on package structure and on interfaces and the behavior of classes.
This is further illustrated in Section 7.

6. AUTOMATING THE APPROACH

In this section we present the tool for automating enforcement of architectural design
rules that was developed in response to our second research objective (which was to
verify that the approach was stringent enough to be automated).

To provide a proof-of-concept of the feasibility of automating the approach, a tool
was built making it possible to automatically check that a system conforms to rules
modeled according to the approach.
There were several options when considering tool support for the approach.

— The rules could be enforced as a separate test, reporting violations.
— The rules could be continuously enforced during modeling, giving the possibility of

guiding the developer during development and, if desired, preventing the modeler
from breaking the rules.

— In both cases the modeled rules could either first be transformed into OCL con-
straints in a UML profile, which would then be enforced, or they could be directly
enforced on the system model.

An important thing to consider was how to make it as easy as possible for an organi-
zation to adopt the new method and tool. For an organization that is already using
modeling tools it would be a big advantage if they did not have to change their model-
ing tools. New tools would incur cost in purchase, training, and transferring models to
the new tools. In our case the organization was using the Rhapsody modeling tool. This
was also the tool that had been used in building the system for which we intended to re-
model the architectural design rules. Hence we needed a tool that could take Rhapsody
models both for the architectural design rules and for the system models. Considering
this we built the tool as a stand-alone checker to the Rhapsody tool, validating the
system model directly against the modeled rules for the following reasons.

(1) To make a plug-in to the modeling tool that continuously checks the model, harder
to make a stand-alone checker, would be harder to move to another tool, and would
risk increasing the response time when modeling.

2Actually, in our example introduced in Section 3, Sensor would instead inherit the rule so as to be allowed
to have associations to <<Data Item>> from Data Item Observer shown in Figure 7.

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 2, Article 10, Publication date: March 2012.

An Approach for Modeling Architectural Design Rules in UML 10:23

Fig. 23. Screenshot of tool.

(2) Although open-source stand-alone tools for OCL checking are available, making
an OCL generator and integrating an OCL checker in Rhapsody was considered
at least as hard as our current approach, and in addition would increase the risk,
since we would be relying on another tool.

The tool is built in C++, and is currently limited to reading Rhapsody [Telelogic Rhap-
sody modeling] models, both for architectural rules and for the system model. The tool
is designed so that there are no dependencies to the model reader component from
any other parts in the tool. This makes it a relatively small task to adapt the tool to
another modeling tool. The total effort to build the tool was approximately 200 hours;
the estimated effort to build another model reader is about 40 hours. A screenshot of
the tool is shown in Figure 23 where the output from the validator is shown in the
text window in the bottom. The text refers to the violations in the Water Level class
in respect to the architectural rules in Figure 7.

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 2, Article 10, Publication date: March 2012.

10:24 A. Mattsson et al.

Table I. A Subset of the Full Table (which had mappings between all the original architectural design rules and
resulting modeling constructs)

Id Original rule (Quotation) Modelreference Used
Transformations

3.2 “Functionality specific to a PAPI -
requirement shall be kept in this
layer unless it is reusable for
another PAPI or applicable to
DVB standard. In this case it
shall be placed in CMP or CMD.” -

4.1 “All coupling between Handled by only allowing
arcComponents shall be loose in the associations from a component to
sense not statically linked” an Interface that is realized by

an arcComponent. T9, T10, T11
4.2 “All associations between User/Resource association from

arcComponents shall be navigable mComponent to mCompIfc
from the client to the server (user
to the resource)” T10

6.7 “In the case of a component locked This is ensured by the
to a specific arcComponentUser, it implementation of the enforced
is the responsibility of the locker to implementation of the
allow only one thread at a time to operations of the
access the component.” mLockableComponent. T13

8.1 “All locked components shall inherit Generalization from
the same base class, arcLocked.” mLockableComponent to

marcLockableComponent, there
is only one instance of
marcLockableComponent
allowed, in an Architecture Pkg
and finally there is only
one Architecture Pkg with
only one marcLockableCompionent
class in the Systemmodel. T8, T11

9.16 “Transmission events and A Write operation is forced to
exceptions initiated by a Write() always end with a call to TxDone
shall be reported back to the
arcPortUser via the TxDone() call.” T13

7. MODELING ARCHITECTURAL DESIGN RULES OF AN INDUSTRIAL-STRENGTH SYSTEM

In this section we present the findings of a case study performed in response to our
third research objective (which was to demonstrate that the approach was applicable
to a real development project).

To demonstrate the applicability of our approach to a real problem, we modeled
the architectural design rules from an already developed system according to our set
of transformations.3 The mapping between the original architectural rules and the
models was documented in a text table. A part of this table is shown in Table I. The
rules could be classified into three categories: structural, behavioral, and judgmental.
Structural rules specified structural constraints such as rule 4.1, 4.2, 6.7, and 8.1 in
the table. Behavioral rules specified constraints on behavior such as rule 9.16 in the
table. Judgmental rules were rules where the developer had to exercise judgment to
follow the rule; 3.2 is an example of such a rule in the table. There were 66 rules

3Note that in a real case the architectural rules model would be modeled as a natural part of the architec-
tural design and not as a separate activity. Normally, there would not even be any textual expression of the
rules, only the architectural rules model.

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 2, Article 10, Publication date: March 2012.

An Approach for Modeling Architectural Design Rules in UML 10:25

Table II. Usage Frequency and Violation Percentage for Each Transformation

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14

Usage
frequency

N.A. 2 3 2 0 2 1 10 N.A. 13 22 6 17 5

Violations (%) N.A. 3,37 4,46 2,92 0,00 3,19 1,55 15,38 N.A. 20,73 34,84 8,55 25,29 9,57

Fig. 24. Part of the architectural rules model.

in total; eight of these could not be modeled. These rules were all judgmental, and
therefore inherently impossible to formalize. The rules typically consisted of one or
two sentences, where the sample rules in Table II are representative.

The average size of the rules was 17 words with a maximum of 38 words and a min-
imum of four words. Table II shows for each transformation the number of rules it
used to model (Usage frequency) and the percentage of architectural review remarks
in the review protocols that related to these rules (Violations). The transformations T1
and T9 are marked as not applicable, since T1 is always used and T9 is always used in
conjunction with T10 and T11. In total there were 1563 remarks in 120 architectural
review protocols. The table shows that the most commonly used rules were T8, T10,
and T11, which specify structural rules on package containment, associations, rela-
tions, and generalizations, and T13 which rules on the operations (i.e., specifies the
interface) of classes. Not surprisingly, these rules are also subject to most violations.

Both the architectural rules model and the architectural parts of the system model
were captured in the Rhapsody modeling tool (version 7.2). Figure 24 to Figure 26 show
parts of these models. Figure 25 shows the subsystems modeled as packages in the sys-
tem model. This level of the system model is owned by the architects. The stereotypes of

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 2, Article 10, Publication date: March 2012.

10:26 A. Mattsson et al.

Fig. 25. Top level of the system model.

these packages are defined in the architectural rules model partly shown in Figure 24.
In this model we can see, for instance, the architectural rules that a <<Subsystem>>
package (that is, a package with the stereotype <<Subsystem>>) must contain a
number of <<Component Pkg>> packages and one <<mRegistry>> class. We can
also see that a <<Component Pkg>> must contain exactly one <<mComponent>>
class that must inherit a <<marcComponent>> class (defined by the architects in the
architecture package in the system model.). In Figure 26 an example of a small com-
ponent in the system model is shown, following the architectural rules defined in the
architectural rules model.

8. DISCUSSION AND CONCLUSIONS

Architectural design rules are an important part of the architecture and there are no
adequate solutions in the current body of literature on how to model them. The in-
ability to formalize the architectural design rules leads to a need for error-prone and
time-consuming manual tasks to enforce them. The approach developed in this study
addresses this problem by providing a technique for modeling architectural design
rules in a way that is formal enough to allow automation. An important property of
the approach is that the architectural design rules are modeled using UML at a high
abstraction level, without requiring detailed knowledge of the UML meta-model. That
the rules are modeled at an abstraction level close to that of the rule itself is required
for the models to be easily understandable for architects and developers, an issue of
paramount importance for the usability of the approach. The use of UML reduces
the required investment in tools and training, since architects and developers benefit
from previous knowledge in UML and are able to use their current UML tools for mod-
eling; to provide automation only requires an additional tool that checks the system
model against the architectural model according to our defined transformations. Our

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 2, Article 10, Publication date: March 2012.

An Approach for Modeling Architectural Design Rules in UML 10:27

Fig. 26. The ClockDevice in the system model.

effort for building such a tool for the Rhapsody modeling tool using its COM API was
approximately 200 man-hours, so this should be a relatively small task.

In applying our approach to modeling the architectural design rules of an industrial
strength system, we found that of the original 66 rules only eight could not be modeled.
This means that we would have relieved the architects of a large part of their enforce-
ment effort; only 12% of the rules would have been left for manual enforcement. The
rules that could not be modeled were all rules where the developer was supposed to ex-
ercise judgement, which made them inherently impossible to formalize. The following
is a typical example of such a rule.

“Functionality specific to a PAPI requirement shall be kept in this layer
unless it is reusable for another PAPI or applicable to the DVB standard.
In this case it shall be placed in CMP or CMD.”

These are rules that need a lot of interaction between the developers and the architects
in order to develop a common understanding of what the rules really mean. It is very
important to get this right at the same time as it is impossible to finalize and formalize
them at an early stage in the project. This is where the focus of the architects should
be, and our approach gives the architects the time to do that. Other benefits are that
modeling eliminates ambiguities and redundancy in the rules, which should make
them easier to understand and give less room for erroneous interpretations.

Although the approach has only been tested on one system, two factors suggest that
the results should, to a large extent, be transferable to other systems and organizations
in the embedded software domain.

(1) The defined transformations are based on raising the general modeling constructs
of UML to the meta-model level, not on the specific needs of the system used for
the test.

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 2, Article 10, Publication date: March 2012.

10:28 A. Mattsson et al.

(2) It is a real-world embedded system of significant size with functionality quite com-
mon in this domain.

There is a need for further research to study the implications when adopting the ap-
proach in other application domains. Factors to investigate include the ease with which
architects, developers and other stakeholders can learn the approach and accommo-
date their working practices to it.

9. ELECTRONIC APPENDIX

The electronic appendix to this article is available in the ACM Digital Library.

REFERENCES
AMERICA, P., ROMMES, E., AND OBBINK, H. 2004. Multi-view variation modeling for scenario analysis. In

Software Product-Family Engineering. F. Vanderlinden Ed., Springer, Berlin, 44–65.
BASS, L., CLEMENTS, P., AND KAZMAN, R. 2003. Software Architecture in Practice. Addison-Wesley, Read-

ing, MA.
BAYLEY, I. 2007. Formalising design patterns in predicate logic. In Proceedings of the 5th IEEE Interna-

tional Conference on Software Engineering and Formal Methods. IEEE, Los Alamitos, CA, 25–36.
BENGTSSON, P. AND BOSCH, J. 1998. Scenario-based software architecture reengineering. In Proceedings

of the 5th International Conference on Software Engineering. 308–317.
BOSCH, J. 2000. Design and Use of Software Architectures : Adopting and evolving a Product Line Approach.

Addison-Wesley, Reading, MA.
BOSCH, J. AND MOLIN, P. 1999. Software architecture design: Evaluation and transformation. In Pro-

ceedings of the IEEE Conference and Workshop on Engineering of Computer-Based Systems (ECBS’99).
IEEE, Los Alamitos, CA, 4–10.

BUSCHMANN, F. 1996. Pattern-Oriented Software Architecture: A System of Patterns. Wiley, New York.
CONBOY, K. AND FITZGERALD, B. 2010. Method and developer characteristics for effective agile method

tailoring: A study of expert opinion. ACM Trans. Softw. Eng. Methodol. 20, 1.
EDEN, A. H. 2002. A theory of object-oriented design. Inf. Syst. Frontiers 4, 4, 379–391.
FRANCE, R. B., KIM, D. K., SUDIPTO, G., AND SONG, E. 2004. A UML-based pattern specification tech-

nique. IEEE Trans. Softw. Eng. 30, 3, 193–206.
FUENTES-FERNÁNDEZ, L. AND VALLECILLO-MORENO, M. 2004. An introduction to UML profiles. Euro. J.

Inform. Profess. V, 2.
GAMMA, E. 1995. Design Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley, Read-

ing, MA.
GREENFIELD, J. AND SHORT, K. 2004. Software Factories: Assembling Applications with Patterns, Models,

Frameworks, and Tools. Wiley, New York.
HOFMEISTER, C., NORD, R. AND SONI, D. 2000. Applied Software Architecture. Addison-Wesley,

Reading, MA.
JANSEN, A. AND BOSCH, J. 2005. Software architecture as a set of architectural design decisions. In

Proceedings of the 5th Working IEEE/IFIP Conference on Software Architecture (WICSA’05). 109–120.
JANSEN, A., VAN DER VEN, J., AVGERIOU, P., AND HAMMER, D. K. 2007. Tool support for architectural de-

cisions. In Proceedings of the 6th Working IEEE/IFIP Conference on Software Architecture (WICSA’07).
44–53.

KARSAI, G., SZTIPANOVITS, J., LEDECZI, A., AND BAPTY, T. 2003. Model-integrated development of
embedded software. Proc. IEEE 91, 1, 145–164.

KRUCHTEN, P. 2004a. An ontology of architectural design decisions in software intensive systems. In
Proceedings of the 2nd Groningen Workshop on Software Variability. 54–61.

KRUCHTEN, P. 2004b. The Rational Unified Process: An Introduction. Addison-Wesley, Reading, MA.
KRUCHTEN, P., LAGO, P., AND VAN VLIET, H. 2006. Building up and reasoning about architectural

knowledge. In Quality of Software Architectures. Springer, Berlin, 43–58.
KRUCHTEN, P. B. 1995. The 4+1 view model of architecture. IEEE Softw. 12, 6, 42–50.
LAUDER, A. AND KENT, S. 1998. Precise visual specification of design patterns. In Proceedings of the 12th

European Conference on Object-Oriented Programming. Springer, Berlin.
LEVY, Y. AND ELLIS, T. J. 2006. A systems approach to conduct an effective literature review in support of

information systems research. Inf. Sci. J. 9, 181–212.

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 2, Article 10, Publication date: March 2012.

An Approach for Modeling Architectural Design Rules in UML 10:29

MAK, J. K. H., CHOY, C. S. T. AND LUN, D. P. K. 2004. Precise modeling of design patterns in UML. In
Proceedings of the 26th International Conference on Software Engineering. 252–261.

MATTSSON, A., LUNDELL, B., LINGS, B., AND FITZGERALD, B. 2009. Linking model-driven development
and software architecture: A case study. IEEE Trans. Softw. Eng. 35, 1, 83–93.

MEDVIDOVIC, N., DASHOFY, E. M., AND TAYLOR, R. N. 2007. Moving architectural description from under
the technology lamppost. Inf. Softw. Technol. 49, 1, 12–31.

MEDVIDOVIC, N., ROSENBLUM, D. S., REDMILES, D. F., AND ROBBINS JASON, E. 2002. Modeling software
architectures in the Unified Modeling Language. ACM Trans. Softw. Eng. Methodol. 11, 1, 2–57.

MEDVIDOVIC, N. AND TAYLOR, R. N. 2000. A classification and comparison framework for software
architecture description languages. IEEE Trans. Softw. Eng. 26, 1, 70–93.

MIKKONEN, T. 1998. Formalizing design patterns. In Proceedings of the International Conference on
Software Engineering Forging New Links. 115–124.

OMG. 2003. MDA Guide version 1.0.1 OMG.
OMG. 2003. UML 2.0 OCL specification.
OMG. 2006. Meta Object Facility (MOF) core specification.
OMG. 2009. Unified modeling language: Superstructure.
PAHL, C., GIESECKE, S., AND HASSELBRING, W. 2007. An ontology-based approach for modeling

architectural styles. In Software Architecture. 60–75.
PERRY, D. E. AND WOLF, A. L. 1992. Foundations for the study of software architecture. SIGSOFT Softw.

Eng. Notes 17, 4, 40–52.
RAN, A. 2000. ARES conceptual framework for software architecture. In Software Architecture for Product

Families Principles and Practice, M. Jazayeri, et al. Eds. Addison-Wesley, Reading, MA, 1–29.
SCHMIDT, D. C. 2006. Model-driven engineering. IEEE Computer 39, 2, 25–31.
SHAW, M., DELINE, R., KLEIN, D. V., ROSS, T. L., YOUNG, D. M., AND ZELESNIK, G. 1995. Abstractions

for software architecture and tools to support them. IEEE Trans. Softw. Eng. 21, 4, 314–335.
SHAW, M. AND GARLAN, D. 1996. Software Architecture: Perspectives on an Emerging Discipline. Prentice

Hall, Upper Saddle River, NJ.
SONI, D., NORD, R. L., AND HOFMEISTER, C. 1995. Software architecture in industrial applications. In

Proceedings of the IEEE 17th International Conference on Software Engineering. IEEE, Los Alamitos,
CA, 196–207.

TELELOGIC RHAPSODY MODELING. http://www.telelogic.com/products/rhapsody/.
TOLVANEN, J. P. AND KELLY, S. 2005. Defining domain-specific modeling languages to automate product

derivation: Collected experiences. In Proceedings of the 9th International Conference on Software
Product Lines (SPLC’05). Lecture Notes in Computer Science, Springer, Berlin, 198–209.

TYREE, J. AND AKERMAN, A. 2005. Architecture decisions: Demystifying architecture. IEEE Softw. 22, 2,
19–27.

VAN DER LINDEN, F., BOSCH, J., KAMSTIES, E., KANSALA, K., AND OBBINK, H. 2004. Software product
family evaluation. In Proceedings of the 3rd International Conference on Software Product Lines
(SPLC’04). Lecture Notes in Computer Science, vol. 3154, Springer, Berlin, 110–129.

WOJCIK, R., BACHMANN, F., BASS, L., CLEMENTS, P., MERSON, P., NORD, R. L., AND WOOD, B.
2006. Attribute-driven design (ADD), Version 2.0., Software Engineering Institute, Carnegie Mellon
University.

ZDUN, U. AND AVGERIOU, P. 2005. Modeling architectural patterns using architectural primitives. In
Proceedings of the 20th Annual ACM SIGPLAN Conference on Object Oriented Programming, Systems,
Languages, and Applications. ACM, New York.

Received July 2009; revised June 2010; accepted September 2010

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 2, Article 10, Publication date: March 2012.

