
2

Method and Developer Characteristics for
Effective Agile Method Tailoring: A Study
of XP Expert Opinion

KIERAN CONBOY
National University of Ireland, Galway
and
BRIAN FITZGERALD
University of Limerick

It has long been acknowledged that software methods should be tailored if they are to achieve
optimum effect. However comparatively little research has been carried out to date on this topic
in general, and more notably, on agile methods in particular. This dearth of evidence in the case
of agile methods is especially significant in that it is reasonable to expect that such methods
would particularly lend themselves to tailoring. In this research, we present a framework based
on interviews with 20 senior software development researchers and a review of the extant lit-
erature. The framework is comprised of two sets of factors—characteristics of the method, and
developer practices—that can improve method tailoring effectiveness. Drawing on the framework,
we then interviewed 16 expert XP practitioners to examine the current state and effectiveness of
XP tailoring efforts, and to shed light on issues the framework identified as being important. The
article concludes with a set of recommendations for research and practice that would advance our
understanding of the method tailoring area.

Categories and Subject Descriptors: D.2.9 [Software Engineering]: Management—Software
configuration management

General Terms: Management, Performance

Additional Key Words and Phrases: Extreme programming, XP, agile method, tailoring, contin-
gency, engineering, software development, expert opinion

ACM Reference Format:
Conboy, K. and Fitzgerald, B. 2010. Method and developer characteristics for effective agile method
tailoring: A study of XP expert opinion. ACM Trans. Softw. Eng. Methodol. 20, 1, Article 2 (June
2010), 30 pages. DOI = 10.1145/1767751.1767753 http://doi.acm.org/10.1145/1767751.1767753

Authors’ addresses: K. Conboy, Business Information Systems Group, Department of Accountancy
and Finance, National University of Ireland, Galway, University Road, Galway, Ireland; email:
Kieran.Conboy@nuigalway.ie; B, Fitzgerald, Lero-Irish Software Engineering Research Centre,
University of Limerick, Limerick, Ireland; email: bf@ul.ie.
Permission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2010 ACM 0163-5948/2010/06-ART2 $10.00
DOI 10.1145/1767751.1767753 http://doi.acm.org/10.1145/1767751.1767753

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 1, Article 2, Publication date: June 2010.

2:2 • K. Conboy and B. Fitzgerald

1. INTRODUCTION

Extreme Programming (XP), along with a number of other agile methods, has
emerged in recent years as a popular approach to software development. Pro-
ponents of the method claim it solves many of the problems endemic to the field
for over 40 years—namely, that systems cost too much, take too long to develop,
and do not serve their intended purpose when eventually delivered. The aim
of this article is to get a better understanding of XP1 tailoring in practice and
how it can be improved in the future. Also, there has been very little research
to date on method tailoring, and we sought to address this by choosing to focus
on tailoring from two perspectives: first, characteristics of the method itself;
and second, characteristics of the actual developers involved in tailoring. The
specific objectives of the article are to

(1) assess how amenable XP is to tailoring, and to develop a set of recommen-
dations for its improvement in this regard, and

(2) investigate how developers are undertaking XP tailoring efforts and to
develop a set of best practices for developers to follow.

For our theoretical base we proposed a conceptual framework drawn from
existing method tailoring literature, and conducted interviews with 20 expert
researchers to further validate the framework. Using the framework as an an-
alytical lens, we then interviewed 16 experienced XP practitioners to assess
the current state of XP tailoring. The article concludes with a set of recommen-
dations to address shortcomings in XP in this area, and a set of developer best
practices for XP tailoring.

1.1 Motivation for This Research

There has been a long-standing acknowledgment that software methods need
to be tailored for use, the essence of which is captured well by De Marco [1982],
p. 13:

I find myself more and more exasperated with the great inflexible sets of rules
that many companies pour into concrete and sanctify as methodologies. Use
the prevailing methodology only as a starting point for tailoring.

This continues as a persistent theme in software engineering research, as
evidenced by the contention by Sommerville and Ransom [2005], p. 93:

It is a truism that any method has to be adapted for the particular circum-
stances of use.

Despite these contentions, little research has been carried out into method
tailoring to date, especially in the context of agile methods [Aydin et al. 2004].
Although some research has described tailoring efforts, these were usually
limited to single case studies. Also, such research has tended to treat method
tailoring as a homogeneous concept. Our primary motivation in this study was

1XP has provided the focus for over 20 texts, an annual conference, and indeed the vast majority
of agile method academic research and practice to date. Given its popularity in both research and
practice, we chose to focus on XP in this study.

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 1, Article 2, Publication date: June 2010.

Method and Developer Characteristics for Effective XP Tailoring • 2:3

to investigate the method tailoring topic in more depth. Thus, we considered
the tailoring issue from two complementary perspectives—that of the charac-
teristics of the actual method being tailored, and also the characteristics of
individual developers responsible for method tailoring. This rich two-faceted
research approach has not been a feature of previous research on the method
tailoring topic.

There is a common misconception that agile methods are centered around
improvisation and care-free deviation from rules and regulations. However,
Beck has dismissed this, stating that agile “is not an excuse for unilateral
behaviour” and he described agility versus discipline as a “false dichotomy.” In
fact, he has argued that agility “is only possible through greater discipline on
the part of everyone involved” [Beck and Boehm 2003]. The need for discipline
has been stressed by many key texts across a broad range of agile methods
(e.g., Schwaber [1996]; Cockburn [2001, 2002]; Schwaber and Beedle [2002];
Beck and Andres [2004]). Given that tailoring of a method is a key part of
the method implementation process, it is important to understand whether
tailoring of agile methods is conducted in a disciplined and structured manner.
In the literature that does exist on this topic, tailoring of XP and other agile
methods seems to be quite a contentious topic. Some believe that flexibility is
one of the key selling points of agile methods (e.g., Beck [2000]; Schwaber and
Beedle [2002]), while others have argued that these methods are not actually
flexible (e.g., Stephens and Rosenberg [2003]; Henderson-Sellers and Serour
[2005]). Documenting the opinions of experts on XP tailoring, as done in this
article, should contribute to advancing current thinking on this debate.

Advocates of XP have suggested it can solve the multitude of problems af-
fecting software development, namely, time and budget overruns, inferior and
ineffective software, and dissatisfied developers, customers, and users (e.g.,
Beck [2000]). However, method tailoring theory suggests that, no matter how
well crafted, there is no single method that provides an exact fit for the needs
of every project Iivari [1989]; Brinkkemper [1996]. Therefore, if XP is to be
regarded as a truly mainstream method, it should be highly amenable to tai-
loring. This study seeks to identify if this is indeed the case, and if not, what
can be done to improve XP in this regard.

Another key motivation of the study is that, where tailoring is concerned,
agile methods introduce many new problems and complexities, or at least exac-
erbate existing ones. Because agile practices “value people over processes and
tools” [Fowler and Highsmith 2001] and “turn up the dial” on social, tacit inter-
action, tailoring of those practices needs to be much more sensitive to personal
characteristics and team dynamics. Unfortunately these traits are often highly
subtle, intangible, and difficult to identify. In addition, agile methods tend to
increase the involvement of other stakeholders in the development process. For
example, customers and users play a much more significant, integrated, and
continuous role when XP is adopted. Tailoring in this case needs to consider
not simply the developers but also the needs and characteristics of these other
stakeholders and the underlying complexities within their organizations.

There is a further theoretical motivation behind this study. Agile methods
are labeled as agile because of their ability to handle changing requirements

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 1, Article 2, Publication date: June 2010.

2:4 • K. Conboy and B. Fitzgerald

quickly and effectively [Schwaber 1996; Cockburn 2001, 2002; Schwaber and
Beedle 2002; Beck and Andres 2004]. However, it is logical to expect that
anything labeled as agile should itself be flexible and amenable to tailoring.
That is, a method that purports to be agile should possess both abilities: first,
it should allow changing requirements, and second, it should itself be flexible
in that it can be continuously changed and customised. Previous studies (e.g.,
Henderson-Sellers and Serour [2005]; Conboy [2006]) have argued that existing
research on agile methods has largely focused on the first but not the second
ability. This study aims to increase our understanding of the second, analyzing
XP’s amenability to tailoring.

A further practical motivation for this study originated from a survey of Irish
organizations involved in agile software development, where tailoring of agile
methods was rated as the primary concern, thus confirming the importance
of this topic in practice also. When asked why tailoring was such an issue,
organizations referred to a lack of knowledge about how tailoring should be
done, and in some cases to previous tailoring efforts that had failed. In partic-
ular, many organizations had invested considerable resources in agile method
adoption and training, but postimplementation use of the respective methods
became so sporadic and disjointed that the transition to agile was abandoned.
These companies were eager to get information as to how agile method experts
are tailoring these methods and to obtain a a set of best practices to assist in
tailoring efforts. We seek to provide this information in this study.

1.2 Extreme Programming

Since the early years of computing, software development projects generally
have tended to be troubled by time and budget overruns, inferior and ineffec-
tive software, and dissatisfied developers, customers, and users [Brooks 1975;
Lehman 1978; Glass 1991; Johnson 1995; Linberg 1999; Keil et al. 2000; Robey
and Keil 2001]. Many methods, method hybrids, and method variants have
been developed and implemented in the hope of overcoming these problems
[Jenkins et al. 1984; Necco et al. 1987; Hardy et al. 1995] in the hope of finding
what Brooks [1987] famously termed the silver bullet. The late 1990s and early
2000s have seen the emergence of agile methods, which seek to “restore cred-
ibility to the word method,” and to eradicate the problems that have hindered
software development for so long [Fowler and Highsmith 2001]. A number of
methods are included in the agile family, the most notable being Extreme Pro-
gramming (XP) [Beck 2000], Scrum [Schwaber and Beedle 2002], the Dynamic
Systems Development Method (DSDM) [Stapleton 1997], Crystal [Cockburn
2001], Agile Modeling [Ambler 2002], Agile Project Management (APM) [High-
smith 2004], Feature-Driven Design [Coad and Palmer 2002], and Lean Soft-
ware Development (LSD) [Poppendieck 2001].2 These methods represent quite
a popular initiative that complements previous critiques of formalized meth-
ods (e.g., Baskerville et al. [1992]; Fitzgerald [1996]; Truex et al. [1999]), and

2Methods are often distributed and communicated in different ways, namely, through manuals,
research articles, consulting, mentoring, etc. In the interests of consistency, this study refers to the
version of each method as documented in the associated references above.

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 1, Article 2, Publication date: June 2010.

Method and Developer Characteristics for Effective XP Tailoring • 2:5

Fig. 1. Key practices of XP (adapted from Beck [2000]).

have been well received by practitioners. There is also evidence to suggest that
use of agile methods has been growing rapidly since their inception [Schwaber
and Fichera 2005; Ambler 2007; Tan and Teo 2007; Vijayasarathy and Turk
2008].

XP originated from an internal payroll system project at Chrysler in 1996–
1997. The project initially suffered from many of the symptoms associated
with traditional software projects, and so the developers involved, including
Kent Beck, constructed a new “common-sense” approach [Beck 2000]. This
was comprised of five key values, namely, communication, feedback, simplicity,
courage, and respect. These in turn were enacted by 12 key practices, sum-
marized in Figure 1. These collectively became known as XP, which is com-
prehensively described by Beck [2000, p. 12], as “a light-weight methodology
for small-to-medium-sized teams developing software in the face of vague or
rapidly-changing requirements.” Beck [2000] explicitly acknowledged that XP
is not a set of revolutionary new development techniques. Rather, it is a set of
tried and trusted principles, well established as part of the conventional wis-
dom of software engineering, but taken to an extreme level—hence the name
extreme programming.

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 1, Article 2, Publication date: June 2010.

2:6 • K. Conboy and B. Fitzgerald

An extended version of XP was introduced in 2004, containing 24 practices
[Beck and Andres 2004]. At the time of that study, however, it proved difficult
to find any project teams using the new version of the method. Furthermore,
while many of the academic interviewees had extensive theoretical and applied
knowledge of the original version, few had any substantive exposure to the 2004
version. In addition, very little research has focused on the new version. All
of these issues could simply be due to the fact that any method takes time
to gain traction and popularity, and it may only be a matter of time before
use of the revised version reaches the same levels as use of the original. This
being the case, we decided to study tailoring of the original set of practices,
given that there is already a well-established audience for the work and an
existing population of method experts to choose from. Also, given that the
study addresses long-term implementation and tailoring of a method, even if
one were to find teams using the new practices, it is unlikely that they would
have been using them for a period of time sufficient to critically reflect on such
long-term issues.

1.3 Method Tailoring Theory

To overcome the many problems traditionally associated with software develop-
ment, there is a tendency to replace older methods with new and apparently im-
proved alternatives. However, constantly striving to derive the ultimate method
or “silver bullet” is regarded by some as somewhat misguided (e.g., Iivari [1989];
Hardy et al. [1995]; Russo et al. [1995]; Brinkkemper [1996]). While method
adherence may yield many benefits, the notion that any one method is univer-
sally superior or even universally applicable has been viewed as fallacious. It
is widely accepted that almost all software development projects are unique,
and that the choice of method or method variant is dependent on many or-
ganizational, technical, or human factors, and the nature of the system being
developed. As a result, it is rare that a method is most effectively deployed in
its original, textbook format. Instead the optimum solution is a tailored or en-
gineered approach to suit each project context [Iivari 1989; Hardy et al. 1995;
Russo et al. 1995; Brinkkemper 1996]. Therefore, a key attribute of an effective
method is that it can be tailored effectively.

As with many themes and issues in the software development literature,
tailoring of software engineering methods has been referred to by many
different terms, including context-based method use [Rolland and Prakash
1996], method adaptation [Baskerville and Stage 2001], method assembly
[Brinkkemper et al. 1998], method configuration [Karlsson and Agerfalk 2004],
and scenario use [Offenbeek and van Koopman 1996]. However, these can be
classified into one of two overarching approaches—namely, contingency-based
method selection (e.g., Naumann et al. [1980]; Davis [1982]; Gremillion
and Pyburn [1983]; Sullivan [1985]; Benyon and Skidmore [1987]; Iivari
[1989]) and method engineering (e.g., Kumar and Welke [1992]; Tolvanen and
Lyytinen [1993]; Harmsen et al. [1994]; Brinkkemper [1996]). Contingency-
based method selection is based on the premise that, rather than accepting
a software development method as being universally applicable, the team

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 1, Article 2, Publication date: June 2010.

Method and Developer Characteristics for Effective XP Tailoring • 2:7

should choose a method from a broad portfolio of development methods to
suit each different project context. Method engineering on the other hand, is
a metamethod process, where instead of selecting a method from an available
library, a new one is constructed or “engineered” from the ground up using
existing “method fragments”3 (Brinkkemper 1996).

Existing research suggests that both contingent-based method selection and
method engineering are usually conducted in an ad hoc, unstructured format,
and that developers learn little about each tailoring effort as they progress
from one project to the next [Fitzgerald et al. 2002; Mirbel and Ralyte 2006].
The literature contains little insight into why this is the case, and few methods
contain any characteristics which aid tailoring [Iivari 1989]. Furthermore, re-
search suggests that developers need to improve they way in which they tailor
these methods [Kumar and Welke 1992].

2. RESEARCH APPROACH

To achieve the objectives discussed earlier, this study was conducted in two
phases (illustrated graphically in Figure 2). In the first we identified a set of
method and developer characteristics which contribute to effective method tai-
loring, and derived a consolidated conceptual framework. This was achieved
through an iterative process, combining (i) a comprehensive review and syn-
thesis of the extant method tailoring literature, and (ii) interviews and other
more informal communication exchanges with 20 expert researchers. The re-
searchers provided continual input into the development of the framework,
and opinions on the current literature and its applicability or relevance. Based
on the formal interviews, and subsequent followup communications, the frame-
work was continually refined and extended. The decision to involve researchers
at this stage was based on a number of factors. Perhaps of most significance was
the fact that much of the extant method tailoring research has been conducted
on teams using large, formal, heavyweight approaches. Developing a frame-
work, based on this body of knowledge, but for evaluating more lightweight,
agile approaches required careful consideration. Given the absence of substan-
tial conceptual research on agile method tailoring, the use of researchers to
advise on changes made to accommodate agile methods, and to ultimately val-
idate the framework, was considered very beneficial.

Using the proposed framework, the second phase of the research sought
to develop an understanding of the current state of XP tailoring. This was
achieved by interviewing 16 expert XP practitioners. The framework compo-
nents were drawn on to formulate interview questions. As with any study,
the framework in this study provided a set of “intellectual bins” [Miles and
Huberman 1999] to structure the collection and analysis of practitioner data.

3A method fragment is defined as any “subcomponent” of a method [Brinkkemper 1996]. Logically,
the definition of method fragment depends on one’s interpretation of method, itself a term which has
been interpreted in many different ways [Connors 1992; Wynekoop and Russo 1995; Brinkkemper
1996; Fitzgerald et al. 2002; Avison and Fitzgerald 2003]. For the purposes of this study, this sub-
component can be an artifact, action, goal, or value within a method [Ågerfalk and Wistrand 2003;
Ågerfalk and Fitzgerald 2005].

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 1, Article 2, Publication date: June 2010.

2:8 • K. Conboy and B. Fitzgerald

Fig. 2. The research approach.

XP contains many different concepts, philosophies, tools, and practices [Beck
2000; Beck and Andres 2004]. In this study, XP was implemented in many
different ways across the 16 projects contexts. In addition, many aspects of XP
are quite tacit and intangible, and so measuring adherence to the norm is quite
challenging. For all these reasons, understanding if and how XP practices
are tailored would have been a very unwieldy and complex task without an
appropriate structuring mechanism.

The rest of this section discusses the approach used to identify and select
participants and to collect and analyze the data.

2.1 Selection of Expert Participants

This study involved a set of interviews with experts in the field of software
development, an approach that is highly beneficial for applied research [Dalkey

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 1, Article 2, Publication date: June 2010.

Method and Developer Characteristics for Effective XP Tailoring • 2:9

Table I. Classification of Experts and Listing of Participants

Desired Background or Method of Expert
Skillset Identification Minimum Selection Criteria
(1) Practitioners who have

used agile methods
—Membership of

relevant agile method
groups (Agile Alliance,
DSDM Consortium etc)

—Personal contacts

>Five years’ agile method
experience

>Three years’ agile project
management experience

(2) Practitioners who have
worked in software
development, and are
aware of agile methods

—Membership of relevant
societies (ITAA, Cutter
Consortium etc)

—Personal contacts

>Seven years’ software
development experience

>Five years’ project
management experience

(3) Academics who have
researched agile methods

Literature review of
relevant academic and
practitioner journals
and conferences

≥Three agile method
publications in refereed
journal/conferences

(4) Software development
researchers who are aware
of agile methods

Literature review of
relevant academic and
practitioner journals
and conferences

≥Five software development
publications in refereed
journal/conferences

and Helmer 1963; Linstone and Turoff 1975; Moore 1987]. First, combining the
judgment of a large number of experts offers a better chance of getting closer to
the truth. Second, it is easier to understand phenomena by obtaining the views
of the actors. Given the ambiguous interpretation and use of agile methods
and the fact that they are socially oriented methods [Beck 2000; Schwaber and
Beedle 2002; Koch 2005], this is highly relevant in the context of this study.
Finally, pooled intelligence is often suited to the resolution of complex and ill-
defined problems [Dalkey and Helmer 1963], difficulties which typify the use
of agile methods, and indeed the study of software development and the study
of agility across all disciplines.

Group size theory varies in its suggestions regarding the ideal number of
expert participants in such a study. Some general rules-of-thumb indicate five
to 10 people for a homogenous population, but 15 to 40 people for a heteroge-
neous population, that is, people coming from different social and professional
stratifications such as academics and practitioners, as is the case in this study
[Delbecq et al. 1975; Uhl 1983]. This study involved 36 interviews, a figure at
the upper range of the recommended group size.

Verifying expertise is somewhat difficult as it can be judged by status, expe-
rience, or “a myriad of other things” [Brown 1968]. A methodical selection of
participants or allowing every willing person to take part is considered highly
unscientific [Sackman 1975; Clayton 1997], and so systematic classification
and selection were conducted. The skills and background of experts required
for this study are listed in Table I, along with the basis for identification and
selection. The minimum selection criteria were based on reasonable expecta-
tions as to the typical characteristics of a software development expert, and
the criteria usually recommended for expert studies (e.g., Brown [1968]; Meyer
and Booker [2001]). As well as selecting a mix of practitioners and academics,
the selection process also ensured that at least half of the participants had the

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 1, Article 2, Publication date: June 2010.

2:10 • K. Conboy and B. Fitzgerald

experience of using or researching traditional, preagile methods, so as to enable
comparison and critical reflection. It is also worth noting that the minimum cri-
teria were lower in relation to the selection of agile-oriented practitioners and
academics, as more stringent criteria requiring more industry experience or a
large number of agile method publications are somewhat unrealistic given that
these methods have such recent origins. The list of participating researchers
and practitioners was presented in Figure 2.

2.2 Data Collection

A critical issue regarding the data analysis phase concerned the unit of analy-
sis, particularly where the practitioner responses were concerned. At the time of
the interviews, many of the practitioners were involved in a number of projects
or roles. This was particularly true of those working as consultants or within
a consulting organization. As the unit of analysis was at the project level, all
practitioners were asked to consider a single project where they were “sub-
stantially” involved. The qualifying questions for this ensured that the project
was of sufficient duration (>3 months), that the interviewees were involved
to a significant degree (>60% of their time), and that they had a role on the
projects which provided them with an informed opinion on the implementation
and tailoring of XP on their projects (consultant, project manager, team lead,
or developer).

Data was collected through personal face-to-face interviews, which is consid-
ered the superior data-gathering technique for qualitative studies such as this
[Yin 2003]. Personal interviews are also well suited for exploratory research
because they allow expansive discussions which illuminate additional factors
of importance [Oppenheim 1992; Yin 2003]. Also, the information gathered is
likely to be more accurate than information collected by other methods since
the interviewer can avoid inaccurate or incomplete answers by explaining the
questions to the interviewee [Oppenheim 1992].

A guiding script was prepared for use throughout the interviews to establish
a structure for the direction and scope of the research. It also ensured coverage
of all aspects of the study with each respondent, and helped achieve some el-
ement of distance between the interviewer and interviewee, while permitting
the researcher to compare and contrast responses [McCracken 1988]. The in-
terview questions were circulated in advance to allow participants to consider
their responses prior to the interviews. The questions were largely open ended,
allowing respondents to convey their experiences and views on the socially
complex contexts that underpin software development and agile method use
[Oppenheim 1992; Yin 2003].

The interviews lasted between 50 and 120 min (average = 85 min). The inter-
views were conducted in a reflexive manner, allowing the researcher to follow
up on insights uncovered midinterview and to adjust the content and sched-
ule of the interview accordingly [Trauth and O’Connor 1991]. Furthermore, a
diary was kept of questions asked during each interview and their effective-
ness, and refinements and additions were made to the set of questions prior
to the next interview. To aid analysis of the data after the interviews, all were

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 1, Article 2, Publication date: June 2010.

Method and Developer Characteristics for Effective XP Tailoring • 2:11

recorded with each interviewee’s consent, and were subsequently transcribed
(total 470 pages), proofread, and annotated. In any cases of ambiguity, clarifi-
cation was sought from the corresponding interviewee, either via telephone or
email.

2.3 Data Analysis

For data analysis, we adopted coding procedures recommended for qualitative
research, systematically labeling concepts, themes, and artifacts so as to be
able to retrieve and examine all data units that referred to each issue across
the interviews. The coding structure adopted in this research consisted of three
distinct mechanisms. First, an identification code was attached to each piece of
text extracted from a transcript (R1 . . . R20 for researchers and P1 . . . P16 for
practitioners) to ensure participant anonymity. Second, a classification schema
was built, acting as what Miles and Huberman [1999] called a set of “intel-
lectual bins,” so as to segment and filter the interview data collected. Finally,
pattern coding was used to “identify emergent themes, configurations or expla-
nations” [Miles and Huberman 1999, p. 47].

3. FINDINGS

3.1 Phase 1—Development of the Conceptual Framework

In this section we present a description of the method and developer character-
istics which facilitate effective method tailoring. These emerged from a review
of the literature and interviews with the senior researchers. Each section in-
cludes a brief synopsis of the literature underpinning each characteristic, and
also includes a review of any relevant XP literature pertaining to that charac-
teristic. This is completed by the proposed conceptual framework encapsulating
these characteristics.

3.1.1 Method Characteristics That Facilitate Tailoring.

3.1.1.1 Explicit Statement of Method Boundaries. The method author can
specify boundaries describing under what conditions the method should or
should not be used. This allows teams to filter out potentially unsuitable meth-
ods when choosing which approach to employ [Brinkkemper 1996].

In relation to XP specifically, it has been suggested that there are environ-
ments unsuitable for its use, such as small teams and distrusting customers
[Beck 2000]. However, the literature contains many studies of its nonconven-
tional use (e.g., large teams [Bowers et al. 2002; Crispin and House 2003; Cao
et al. 2004], startups [Auer and Miller 2002], distributed development envi-
ronments [Kircher et al. 2001; Stotts et al. 2003], greenfield sites [Rasmusson
2003], educational environments [Johnson and Caristi 2003; McDowell et al.
2003; Wainer 2003], open source development [Kircher and Levine 2001], and
systems maintenance [Poole and Huisman 2001]). This suggests the boundaries
of XP use are not so clearly identified, nor indeed accepted.

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 1, Article 2, Publication date: June 2010.

2:12 • K. Conboy and B. Fitzgerald

An analysis of the proprietary4 texts accompanying many other agile meth-
ods reveals a similar tendency among method authors not to state method
boundaries and limitations. Schwaber and Beedle [2002] were adamant that
“Scrum works for all projects” [p. 112] regardless of size, system type, system
criticality, or expectations regarding quality. Cockburn [2001] conceded the
limitations of Crystal, but then included different variants to widen its appli-
cability. While there have been caveats mentioned in relation to other methods
[e.g., Stapleton [1997]; Poppendieck [2001]; Ambler [2002]; Coad and Palmer
[2002]), an explicit statement of method boundaries is missing for them all.
One explanation for this is the possibility that these methods are indeed ap-
plicable in all circumstances, unlike their traditional counterparts. However,
such one-size-fits-all application of agile methods has been questioned in sev-
eral research studies [e.g., McBreen [2003]; Stephens and Rosenberg [2003];
Koch [2005]).

3.1.1.2 Contingency Built In to Method Itself to Guide Tailoring. To aid
tailoring, a method can contain what Iivari [1989] called built-in contingency,
whereby the method itself provides guidance for the tailoring process, contain-
ing an encompassing framework allowing it to be adjusted to fit any context.
While some traditional methods acknowledge the need for such flexibility [e.g.,
Wood-Harper et al. [1985]; Booch [1994]; Coleman et al. [1994]), very few in-
clude mechanisms to facilitate such tailoring [Avison and Wood-Harper 1991].

From an analysis of the literature, it seems that XP does not adequately
deal with this issue either. In comparison with other methods, XP’s practices
are “highly prescriptive” [Abrahamsson et al. 2002] and binary; either the
practices are followed or they are not [McBreen 2003]. Although Beck and
other XP enthusiasts have acknowledged that tailoring can and indeed should
be conducted, Crystal [Cockburn 2001] is the only agile method which builds
contingency into itself, offering clear instructions as to how tailoring should
be accomplished. This is done by including variants to be used depending on
project needs. The lack of guidance regarding how XP can be tailored is remi-
niscent of the older, more traditional methods where the need for flexibility is
acknowledged but not addressed.

3.1.1.3 Clear Description of Method and Rationale Behind Method Practices.
Of the various method engineering frameworks in existence, almost all re-
quire an explicit rationale to guide the use of method fragments (e.g., Tolvanen
and Lyytinen [1993]; Cronholm and Goldkuhl [1994]; Harmesen et al. [1994];
Brinkkemper [1996]; Harmsen [1997]). This provides the software development
team with as much information as possible about each method fragment, and
specifically why it should be included in the method being constructed.

Current XP literature which specifically addresses the rationale behind each
of its constituent practices is scarce and what does exist is inconclusive. On

4In this article, the term proprietary texts is used to refer to those works in agile method literature
commonly accepted as originating handbooks, or official guides of a method; for example, XP’s
proprietary texts would be Beck [2000] and the later Beck and Andres [2004], while that for Scrum
guides would be Schwaber and Beedle [2002] as the most noted.

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 1, Article 2, Publication date: June 2010.

Method and Developer Characteristics for Effective XP Tailoring • 2:13

the one hand, there are a couple of dissenting texts which have portrayed
XP as being irrational and vague [McBreen 2003; Stephens and Rosenberg
2003]. In addition, several studies have also highlighted the fact that some XP
practices are nonprescriptive, and represent a high level of abstraction, lending
themselves to inconsistent interpretation and implementation [Abrahamsson
et al. 2002; Boehm and Turner 2004; Koch 2005]. On the other hand, however,
an analysis of the literature reveals numerous texts dedicated to XP, and the
method is also predominant in most research on agile software development. In
many of the texts, a whole chapter is dedicated to each XP practice. Therefore,
from an analysis of these texts at least, it is hard to argue that the creators of
these methods have not provided an adequate explanation of their constitution
and rationale.

3.1.1.4 Independence of Individual Method Practices. A further key at-
tribute which renders a method amenable to tailoring is the extent to which
its individual component practices are independent, allowing them to be sep-
arated or combined without fear of unknown subsequent effects [Kumar and
Welke 1992].

Some XP literature has suggested that agile method practices can be tailored
with ease, and there are numerous cases to support this notion [e.g., Bowers
et al. [2002]; Rasmusson [2003]; Cao et al. [2004]). Beck and Fowler [2001]
stated that “no two XP projects will ever act exactly alike” [p. 52], and once
a software development team is comfortable with the basic process, it can
change the practices to fit the context more precisely. However, many have
argued that one of the most distinctive features of XP is that its practices are
not independent, but instead are very “tightly coupled” [Auer and Miller 2002],
“daisy-chained” [Stephens and Rosenberg 2003] “interdependent” [Beck 2000],
and “synergistic” [Martin 2003]. Beck [2000, p. 12] stated that “any one [XP]
practice doesn’t stand well on its own . . . and they require the other practices to
keep them in balance,” although he later claimed that the practices within the
modified version of XP are more independent [Beck and Andres 2004]. Boehm
and Turner [2004, p. 115] cited an unnamed “agilist” who rejects any partial use
of XP and claimed that “the pieces fit together like a fine Swiss watch.” Despite
the fact that XP is supposedly adaptable to a wide variety of projects, Stephens
and Rosenberg [2003, p. 77] stated that the “authors have got it exactly the
wrong way around.” Instead, they likened XP to a “self-referential safety net,”
where, even if some practices add no value, it is impossible to remove them if
they are necessary to hold the other ones in place.

3.1.2 Developer Practices That Facilitate Tailoring. While there are a
number of ways in which the method itself can aid the tailoring process, much
responsibility also lies with developers to tailor effectively. Key developer prac-
tices are now described and accompanied by an analysis of the XP literature.

3.1.2.1 Identification of Project Context Dependencies. In a contingency-
based tailoring process, a method is selected from a portfolio of alternatives,
matching the method to the project context. The process of mapping the
characteristics of the project facilitates a more informed process of method

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 1, Article 2, Publication date: June 2010.

2:14 • K. Conboy and B. Fitzgerald

selection. The explicit identification of the traits and nuances of the develop-
ment environment improves the chances of achieving a close alignment be-
tween method and the environment [Kumar and Welke 1992; Harmsen et al.
1994; Brinkkemper 1996]. Many studies have proposed features, or “situation
dependencies” [Kumar and Welke 1992] of a software development project envi-
ronment which should be taken into consideration by developers when making
this decision (e.g., Davis [1982]; Gremillion and Pyburn [1983]; Iivari [1989]).
These characteristics can be categorized broadly as technical (i.e., type of sys-
tem or programming language), organizational (i.e., development culture or
maturity), or human (i.e., level of experience), among others.

In terms of XP, researchers have proposed sets of situational characteris-
tics upon which the decision to adopt XP and other agile methods should be
based (e.g., Boehm and Turner [2003, 2004]; Koch [2005]). These include team
size, relationship with the customer, criticality of the system, dynamism of the
environment, developer competency, team culture, and preexisting tools and
processes. However, the XP literature sheds little light of the extent to which
developers go through this process and choose XP on the basis of situational
characteristics—neither Boehm nor Koch indicated whether their models are
used in practice. There is no rigorous research as far as we are aware that
examines the extent to which developers identify which dependencies apply to
their project and whether they are basing the decision to use or not use XP
based on these dependencies.

The literature suggests that a lot of adaptation and extension to the XP
method may be required when applied to, for example, large teams [Bowers
et al. 2002; Crispin and House 2003; Cao et al. 2004], startups [Auer and Miller
2002], distributed development environments [Kircher et al. 2001; Stotts et al.
2003], greenfield sites [Rasmusson 2003], educational environments [Johnson
and Caristi 2003; McDowell et al. 2003; Wainer 2003], open source development
[Kircher and Levine 2001], and systems maintenance [Poole and Huisman
2001].

3.1.2.2 Familiarity with a Range of Methods and Method Fragments. To
support effective contingency-based selection, the software development team
should be familiar with a broad range of methods from which to choose. This
requirement is often cited as a key limitation of contingency theory, given
that most developers have experience of no more than one or two methods,
and a comprehensive knowledge of even one full method is rare [Kumar and
Welke 1992]. Familiarity also has a key role to play in method engineering,
as developers should have an understanding of many methods and method
fragments in order to construct new methods and combinations of fragments
[Brinkkemper et al. 1998].

While there are numerous case studies of XP use (see previous section),
none, as far as we are aware, identified the extent to which the teams had
knowledge or experience of other methods, agile or otherwise. Almost all XP
case studies have focused on one project setting, and while these have revealed
many insights, they have not revealed whether XP was selected from a pool of
methods, or whether developers were even familiar with any other methods.

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 1, Article 2, Publication date: June 2010.

Method and Developer Characteristics for Effective XP Tailoring • 2:15

A small number of studies such as Fitzgerald et al. [2006] have described the
amalgamation of XP and Scrum in a single project but this is certainly not
enough to conclude that many teams have had similar combined knowledge.

3.1.2.3 Disciplined and Purposeful Approach to Method Tailoring. As
stated in the introduction to this article, method tailoring is so pervasive in
software development that the textbook implementation of methods in practice
is rare. However, such efforts are often ad hoc, suboptimal, and problematic.
Tailoring is still carried out in an ad hoc fashion, and little is learned about
tailoring across projects [Iivari 1989; Brinkkemper 1996]. There are a number
of frameworks for engineering and tailoring methods, some of which classify
method fragment attributes (e.g., Brinkkemper et al. [1998, 1999], while others
classify the goals and values to which method fragments should make a con-
tribution (e.g., Ågerfalk and Wistrand [2003]; Ågerfalk and Fitzgerald [2005]).
According to these studies, the team should use these to categorize fragments,
and structure the development of a new method, ensuring the fragments link
cohesively and contribute to a common goal.

An analysis of the XP literature suggests that many efforts have been made
to tailor XP to suit a variety of contexts, as outlined above. These studies have
usually provided a detailed account of the tailored and enacted practices and
in some cases the relative success or failure of the initiatives. However, there
has been little focus specifically on the extent to which such tailoring is done
in a disciplined manner, and it is not known whether or how teams evaluate
each XP practice before deciding whether to adopt it, tailor it or remove it.

3.1.3 Summary of Phase 1. This section has outlined the key developer
and method characteristics which can aid the tailoring process, resulting in
a method which provides as close a fit to the project context as possible. We
summarize the results of this section in Figure 3 and propose that the method
and developer characteristics identified improve the effectiveness of method
tailoring.

3.2 Phase 2—Assessment of XP Tailoring in Practice

In the first phase of this study, we derived a conceptual framework (Figure 3),
identifying the key method and developer characteristics that contribute to
effective method tailoring. This phase also identified a realtive paucity of ex-
isting research examining the extent to which XP as a method and developers
using XP exhibit these characteristics. We now apply the framework in Phase
2 to evaluate the extent to which XP and developers using XP exhibit the
characteristics which contribute to effective method tailoring. The 16 prac-
titioners interviewed were listed earlier in Figure 2. To protect anonymity
the respondents have been assigned the pseudonyms P1 to P16 in a random
order.

3.2.1 Method Characteristics That Facilitate Tailoring.

3.2.1.1 Explicit Statement of Method Boundaries. The earlier review of the
literature identified a lack of defined boundaries as to where XP could and could

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 1, Article 2, Publication date: June 2010.

2:16 • K. Conboy and B. Fitzgerald

Fig. 3. Method and developer characteristics contributing to method tailoring.

not be applied. When questioned, 14 of the 16 practitioners stated that, for the
purposes of their project, they too had trouble identifying the boundaries of XP
suitability. In seven of the 16 project teams, members read XP documentation
or attended conferences with the intention of determining the extent to which
they could apply XP given the specific context of their respective projects, but
none felt their efforts made this decision sufficiently clear. As one stated, “I
heard many interesting opinions but they were inconsistent, conflicting, and
when I left I wasn’t really any clearer on what practices we could or couldn’t
use” (P7). In one case the practitioner in question (P8) organized a “birds-of-a-
feather”5 session at an agile methods conference entitled “When does XP not
work?” The purpose of the session was to “get past the vague responses and
figure out once and for all whether XP would work on our project.” According to
this practitioner, 35 people attended and although all seemed to consider this
issue to be crucial, “there was no consensus on anything—we left no wiser than
when we arrived” (P8).

On all three projects where external XP consultants were used, there was
reluctance among these consultants to draw such a boundary and declare any
XP practice unsuitable for use. Instead, all three recommended a trial period
where the team would reflect on all practices before making a decision regard-
ing their use. This was described by one practitioner:

He [the consultant] would not commit when we asked him to advise us on which
XP practices would and would not work. With us he insisted on a “try first”

5Birds-of-a-feather session: a scheduled slot at a conference where individual attendees can post
topics for like-minded individuals to discuss.

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 1, Article 2, Publication date: June 2010.

Method and Developer Characteristics for Effective XP Tailoring • 2:17

approach where all practices are tried and only dropped if not working. But
after 6 months and his refusal to accept any arguments against the method,
I’d say his philosophy was “try first, and if it doesn’t work then just try harder.”
(P7)

In the course of their projects, many of the practitioners encountered con-
sultants or XP advocates who referred to the method as the “bible” (P4, P7,
P11, P12) with something almost akin to religious fervor in their view that
the method should never be tailored or even questioned. One practitioner re-
called the experiences of working with one consultant whom he called an “agile
apostle,” where the practices of XP were continuously referred to as “the 12
commandments” (P4).

These findings support the earlier analysis of the literature—the boundaries
of XP application are unclear. XP texts and XP consultants are often slow to
concede the limitations or boundaries of the method.

3.2.1.2 Contingency Built In to Method Itself to Guide Tailoring. As shown
by the sporadic and diverse adoption of practices across the 16 projects stud-
ied, it is clear that in all cases XP was tailored to some degree. However, the
literature suggests that a highly tailorable method should guide some or all of
the tailoring process. The 16 practitioners were asked to consider the extent to
which XP texts, their research, and other available XP resources contributed
to their tailoring efforts. The analysis revealed that 15 practitioners had read
a significant number of XP texts and got information from other sources such
as blogs and research articles, and in fact 14 of the 16 had attended at least
one XP conference. In another instance the project was a small part of a larger
initiative, and so all tailoring decisions were made at a higher level. This leaves
14 relevant projects for this part of the study.

Assessing how reading an XP book, a tailoring process document, or other
material impacts the tailoring decision process is very difficult, as the associ-
ation may be informal and subconscious. Nevertheless, across the 14 projects,
none of the practitioners thought that the XP method and associated material
guided the tailoring process in any meaningful way. Instead, they stated that
tailoring efforts were based on the intuition and personal experiences of the
managers or developers involved.

The earlier discussion of the literature suggests that practitioners rarely
pay attention to method documentation in practice, and this could help explain
why such documentation did not impact tailoring efforts. However, in this
study, the responses indicate that, rather than practitioners being ignorant of
XP material, many actually sought assistance from such resources, but to no
avail. To illustrate, one practitioner described his longing for a simple document
accompanying an agile method, telling him “if a particular circumstance exists,
do these steps, if a different circumstance exists, do these steps, and so on”
(P5). Another practitioner’s experience illustrated a search for help, but more
significantly showed that the lack of built-in contingency had a real negative
impact on the project:

We changed a lot of things about XP. It took a long time to perfect, given we were
flying in the dark, on a trial and error basis, but we got there. And I think we are

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 1, Article 2, Publication date: June 2010.

2:18 • K. Conboy and B. Fitzgerald

more agile. I just wish the option to use these alternatives could have been part
of the method. It would have saved a lot of time, effort and uncertainty. (P1)

The absence of built-in contingency is not specific to XP, or indeed to agile
methods in general, as this has been a problem associated with traditional
methods at least as far back as the 1980s [Iivari 1989]. However, it is of more
concern in an agile method context, given that, as discussed earlier, a method
that claims to be agile should be as adaptable and amenable to tailoring as
possible.

3.2.1.3 Clear Description of Method and Rationale Behind Method Practices.
All 16 respondents stated that they had a clear understanding of XP, at least at
a high level. This is not surprising given that a key criterion in the selection of
participants in this study was extensive knowledge and experience of XP. The
interviews did, however, reveal a number of additional issues regarding a lack
of clarity in the rationale behind XP practices.

First, while the practitioners themselves had a good understanding of XP,
some people in their respective teams found certain XP practices quite difficult
to grasp. Implementing some practices such as pair programming and on-site
customer was relatively straight-forward. However, particular practices, such
as the system metaphor6 and simple design practices, were not. A common com-
plaint was that practitioners found the level of abstraction across XP practices
to be quite varied, making it difficult to make a rational tailoring decision. One
described practices including pair programming as “prescriptive, operational
and detailed,” but practices such as the simple design and metaphor as more
“abstract” and open to wider interpretation (R3).

In addition to a lack of clarity regarding how some XP practices should be
implemented, the study indicates that the rationale behind some agile method
practices is not that clear, and, as one practitioner stated, “Unless you under-
stand the rationale, you can’t make an informed decision about extending that
step, tailoring it, [or] dropping it” (P10). Again, the system metaphor and simple
design practices were identified as being problematic, with 11 of the 16 prac-
titioners stating that the rationale behind these were unclear to them and/or
their respective teams. As stated earlier, the emergence of most agile methods
has been accompanied by proprietary texts which clearly describe the rationale
behind the method’s practices (e.g., Beck [2000]; Cockburn [2001]; Schwaber
and Beedle [2002]). However, one respondent suggested the perceived lack
of clarity regarding these practices could arise as a result of these methods
being communicated second and third hand without the aid of proprietary
documentation.

3.2.1.4 Independence of Individual Method Practices. All 16 practitioners
stated that tailoring of XP was made more difficult by the fact that many
practices, rather than being independent, are actually highly interdependent
and tightly coupled. Various participants recalled problems or concerns when

6The system metaphor practice has been removed in the most recent version of XP [Beck and
Andres 2004], but featured in the version adopted by the 16 projects studied.

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 1, Article 2, Publication date: June 2010.

Method and Developer Characteristics for Effective XP Tailoring • 2:19

trying to separate XP practices on their respective projects, and described them
as being “interrelated” (P1, P7), “interconnected (P9), “fused” (P11), “meshed”
(P8), “knitted” (P16), “tightly coupled” (P4), or “tethered” (P12), which together
form a set of “checks and balances” (P6).

Most practitioners had experience of using traditional methods alongside or
prior to adopting agile. When asked to compare independence of XP practices
to that of other methods, the consensus was that a lack of independence was
a problem irrespective of the method being used. All the practitioners stated
that, in the experience of their current or most recent XP project, this issue
was exacerbated by the “softer” (P1), “social” (P3) nature of many of the XP
practices. This rationale was captured quite well by one interviewee:

When I am thinking about asking the team to write a document or use a tool,
I know what [subsequent] effect it will have on the other work they are doing.
But with XP it’s a mess. I don’t know if pairing them off or getting them to
present their work twice a day is going to help everything else or cause it to
implode. (P8)

Recognizing that XP practices were perceived to lack independence, the in-
terviewees were asked if they “grouped” or “clustered” any interrelated XP
practices on their projects. While many acknowledged that XP practices could
and perhaps should be grouped into clusters, none identified such practice in-
terdependencies or explicitly attempted this exercise on their project. Even
the three interviewees who felt that certain parts of commercial agile meth-
ods could be decomposed still conceded that there were “clusters of practices”
embedded within XP that are so reliant on each other that they should not be
decomposed and applied in isolation.

An analysis of the projects also showed that, not only were XP practices lack-
ing independence, but that this was having a negative impact in practice. Many
wanted to remove what they perceived to be non-value-adding practices, but
were reluctant due to the embedded nature of these practices and uncertainty
about what impact their removal would have on the effectiveness of other prac-
tices. As a result, many XP practices were retained even though they added
little or no value and in some cases even had a negative impact on the project.
This problem is somewhat reminiscent of Stephens and Rosenberg’s [2003] cri-
tique of what they called the self-referential safety net, whereby no fragment
can be removed regardless of its limitations, due of the other fragments which
are dependent on it.

3.2.2 Developer Practices That Facilitate Tailoring

3.2.2.1 Identification of Project Context Dependencies. The literature sug-
gests that developers should consider situational dependencies when deciding
on which method to adopt. Of the constructs being examined in this article,
this task is perhaps the most difficult, given that the decision to base method
selection on its suitability to the project environment is rarely explicit.

When asked to reflect on their most recent XP projects, only one practitioner
(P5) said that a formal method selection process had been followed, where
project dependencies were explicitly identified and used as a basis to identify XP

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 1, Article 2, Publication date: June 2010.

2:20 • K. Conboy and B. Fitzgerald

as the most suitable method. In this case, the practitioner read a number of XP
and agile method texts to determine the types of projects most suited to XP. The
most valuable of these, according to the practitioner, was Boehm and Turner’s
[2003] assessment framework, and this became a core part of the evaluation
process. All 15 of the team’s developers, an on-site customer, and three other
stakeholder representatives met on three occasions to identify where their team
and project were positioned along each of the Boehm and Turner framework’s
five axes. This represents a good working example of method selection based
on the identification of situational dependencies.

None of the other 15 projects identified situational dependencies in such a
clear and transparent manner. While a few of the other practitioners stated
that they would have informally considered such dependencies themselves, the
majority stated that the characteristics of their projects had very little impact
on the decision to adopt XP. This is supported by the fact that none of the 16
projects displayed all of the characteristics typically associated with XP. For
example, 11 involved distributed development, nine involved large teams, nine
could not facilitate an on-site customer (or a customer did not exist), eight were
required to comply with organization-wide development processes or reporting
structures, and four involved critical systems.

In many cases the decision to adopt XP was often driven by one single “cham-
pion” without input from any other team members or stakeholders (P1, P2, P3,
P4, P6, P8, P10, P16). In such cases, the decision to adopt XP was made first,
with the suitability to context being an “afterthought” (P4). On the other hand
P5 and P6 recalled exemplorary cases of collective involvement in the decision-
making process. In P5’s case, a series of three semiformal workshops on XP
were conducted which all team members attended and where they raised any
potential concerns and issues. These were then discussed and either resolved
the same day, or members of the team were appointed to research the issues,
get external advice, and try to identify a resolution. Regarding P6, all nine
team members attended at least one XP conference to familiarize themselves
with the method and to ensure they were satisfied with continuing to use XP.

In cases where the project characteristics did not suit XP, rather than drop-
ping the method, there were multiple examples of “lubricating” (P3) the envi-
ronment to suit XP. For example, large teams were broken down into smaller
teams (P6, P8, P11, P12, P16), a proxy customer was used in the absence of a
real customer (P1, P2, P4, P8, P16), and systems were decomposed into critical
and noncritical components (P8, P10). While tailoring the environment to suit
XP seemed very effective in certain circumstances, some interviewees cited
examples where this could be taken to an unrealistic extreme. For example,
P16 complained that one agile method consultant persistently recommended
the use of XP for a government project despite its poor fit, and “couldn’t grasp
the fact that the structure of 50,000 people can’t revolve around what suits one
10-person team” (P16).

3.2.2.2 Familiarity with a Range of Methods and Method Fragments. Con-
tingency literature suggests that method users should ideally be familiar with a
range of methods and fragments to allow the effective tailoring and substitution

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 1, Article 2, Publication date: June 2010.

Method and Developer Characteristics for Effective XP Tailoring • 2:21

Fig. 4. Sporadic adoption of XP practices.

of fragments. Therefore, even though XP was used on all 16 projects’ studies,
ideally the developers should be familiar with a range of other methods.

While all 16 developers interviewed had some level of textbook or second-
hand knowledge of other agile methods apart from XP, this was restricted to
Scrum in 15 cases, and knowledge of any other methods was very sporadic.
In terms of practical, hands-on experience, only three of the 16 practitioners
had used an agile method other than XP, and interestingly again, all of these
involved a combination of XP and Scrum. In fact, every interviewee had more
practical experience of traditional method usage than use of other agile meth-
ods with the exception of XP. The primary reason for this was that, prior to
adopting XP, these developers used either a traditional or an amethodical ap-
proach to software development. In all 16 cases, once the project team had
committed to a transition to agile, the first point of departure was XP. No team
had moved from one agile method to another. Previous research has found that
developers using plan-driven methods are usually not familiar with a portfolio
of methods and fragments and are therefore not in a position to tailor meth-
ods successfully using a contingency approach [Kumar and Welke, 1992]. Our
findings in this study suggest that developers using XP are no more likely to
be familiar with a range of methods, and where they are familiar with alterna-
tives, these are more likely to be traditional than agile.

An analysis of responses suggests that even hands-on familiarity with XP in
its entirety was rare. According to an analysis of interviewee responses, while
software development teams may say they are using the method, in many
cases only a minority of practices are actually implemented. As illustrated in
Figure 4, while all teams used at least one XP practice, none used more than
10 XP practices. In fact only 25% of those projects were adopting more than
half of the practices.

3.2.2.3 Disciplined and Purposeful Approach to Method Tailoring. From
the data collected it is clear that many of the tailoring efforts were conducted
in an ad hoc, unstructured manner. In most cases there was little evidence to
suggest that due consideration was given to each practice before discarding it.

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 1, Article 2, Publication date: June 2010.

2:22 • K. Conboy and B. Fitzgerald

In fact, rather than starting with 12 practices and reducing the number actually
implemented based on some rationale, most projects adopted an incremental
approach, starting with a few practices but never actually getting beyond a
few key ones. This is directly at odds with recommendations in the method
tailoring literature which suggests that developers trial the “vanilla” version of
the method or at least evaluate each of the method’s practices before deciding
which to adopt, tailor, or remove. Only one practitioner stated that, on his
project, the “pros and cons” of each practice were debated thoroughly before
deciding whether to adopt it or not (P15).

There was also evidence to suggest a possible correlation between familiarity
with practices and their selection. On many projects practices were retained if
they were perceived to be easy or if they had been used on previous projects. In
contrast, however, many of the practices which were not used were ones where
the team had difficulty understanding them. As one practitioner stated: “The
practices the [developers] knew absolutely nothing about were just the ones
they loved to drop” (P12).

Once each project commenced and a decision was made regarding what
practice to use, there was little explicit monitoring of ongoing adherence to the
XP method. In most instances practices were only carried out if “the developers
felt like it” (P1). P15 was the only exception, where developers had to present
their adherence or nonadherence to each key practice at every postiteration
retrospective meeting, and had to explain the reasons for any noncompliance.
Ongoing tailoring usually was not centrally controlled by management, but
was instead left to the discretion of the teams. In some cases this was because
the project managers felt that developers were the most appropriate people to
make the decision:

I could have forced them to use practices, but isn’t developer empowerment the
whole idea behind XP? Anyway, if they don’t think it’s worth doing, then I’m
not going to tell them otherwise. (P11)

This is in line with the values of XP where developer empowerment is encour-
aged and viewed positively.

While there may be benefits to allowing ad hoc tailoring, disciplined tailoring
is nevertheless a key aspect of effective method tailoring. Our study provided
further evidence to suggest that ad hoc tailoring had negative effects for the
projects studied. First, in some cases, tailoring was ad hoc not because the
respective managers decided to empower the developers but simply because
ensuring compliance with XP practices was beyond the control of the managers:

XP is not like other methods. I can get the team to carry out technical proce-
dures; but the social side of XP that goes with pairing, standups and constant
collaboration—if they don’t want to do it, I can’t make them. (P3)

Second, unstructured tailoring always resulted in projects being subjected to
what the practitioners called the “haphazard” (P12), “disjointed” (P6), “spo-
radic” (P3), or “patchy” (P15) use of XP. This does not refer to adherence to
selected practices as illustrated in Figure 3. Instead, the interviewees were
referring to differing levels of adherence within the team itself, for example,

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 1, Article 2, Publication date: June 2010.

Method and Developer Characteristics for Effective XP Tailoring • 2:23

some developers using some practices and not all developers using the same
practice in the same manner.

These findings suggest that problems cited by previous researchers (e.g.,
Iivari [1989]; Kumar and Welke [1992]) in relation to traditional methods may
still hold true for XP; tailoring is still left to the discretion of developers, it
is still carried out in an ad hoc fashion, and little is learned about tailoring
across projects. The need for diligent tailoring should perhaps be considered as
even more of an imperative, according to one researcher in the first round of
interviews, given the “uncharted” nature of XP (R5). He argued that some of the
flawed parts of older methods have been exposed through years of application,
but that it was “inexcusable” for a team to discard parts of XP when so little is
still known about its use.

4. CONCLUSIONS

This article contributes to XP and general software development literature by
introducing a conceptual framework of effective method tailoring from two com-
plementary perspectives: that of the characteristics of the actual method being
tailored, and that of the characteristics of the individual developers responsible
for method tailoring. This rich, two-faceted, research approach has not been a
feature of previous research on the method tailoring topic. The framework was
then used to analyze XP and the use of XP in practice. In contrast, the exist-
ing literature on XP and other agile method tailoring tends to be descriptive
rather than grounded in a theoretical framework or set of principles. In fact,
these studies usually describe the final tailored method and its success, but do
not discuss the tailoring process itself in any significant detail.

We considered the extent to which XP fulfils each of the four method
characteristics—the explicit statement of method boundaries, contingency built
in to the method itself to guide tailoring, a clear description of the method and
rationale behind method practices, and the independence of method practices.
We found these to be largely absent in XP, which is surprising given that,
as stated earlier, a method labeled agile should logically contain these agile
properties.

It is also clear from the study that there are a number of deficiencies which
hinder XP tailoring in practice. Developers who use XP are not adhering to the
tailoring “best practices,” identified in this study based on interviews with se-
nior researchers and a review of the extant method tailoring literature. There
are improvements that could be achieved in relation to each of the developer
practices, and doing so would improve the effectiveness of future tailoring ef-
forts. Identifying project context dependencies, ensuring familiarity with more
than one agile method, and adopting more structured tailoring approaches
would lead to more effective XP tailoring efforts than exist at present.

In Tables II and III we provide a synopsis of findings in relation to the
characteristics of XP relevant to method tailoring, as well as of practices for de-
velopers currently using XP. In Table II we summarize our findings in relation
to method characteristics and identify a number of recommendations for soft-
ware engineering research. Our study identified many gaps in the literature,

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 1, Article 2, Publication date: June 2010.

2:24 • K. Conboy and B. Fitzgerald

Table II. Recommendations for Software Engineering Research to Improve XP Tailoring

Recommendations for Software
Construct Finding Development Researchers
Explicit statement

of method
boundaries

Fourteen of 16 teams studied had
difficulty identifying where XP
should and should not be applied.
XP conference attendance and help
from external consultants did not
provide any substantial assistance
with this issue. Opinions
suggested that this was a problem
throughout the XP user
community.

(1) Determine levels of project
success across different
potentially problematic
software development
environments (e.g., distributed
development, large teams,
critical systems, inexperienced
developers).

Contingency built
in to method
itself to guide
tailoring

No practitioner thought that XP
guided the tailoring process in any
meaningful way, despite the fact
that some developers needed and
actively sought such guidance. All
tailoring efforts were based on
team members’ own opinions and
preferences.

(2) Identify alternatives for each
XP practice, which achieve the
same or similar goals and
objectives (e.g., instant
messaging, screen sharing,
video conferencing, and
common file storage can help
replace XP’s practice of
colocation in a distributed
development environment).

Clear description
of method
rationale behind
method practices

There was mixed opinion regarding
how clearly XP texts explain the
rationale and execution of its
underlying practices. Most were
unclear as to the exact advantages
and disadvantages of each
practice, and were concerned that
many accounts of benefits are often
anecdotal, or too subtle to be
clearly identified.

(3) Quantitative research to
determine advantages/
disadvantages of XP practices.

(4) In-depth qualitative research
to uncover more subtle, softer
advantages/ disadvantages of
XP practices.

Independence of
individual
method practices

Problems or concerns regarding
splitting of XP practices occurred
in 10 of the 16 projects studied (P1,
P4, P6, P7, P8, P9, P11, P12, P15,
P16). The consensus was that the
social and softer nature of XP
practices makes it very difficult to
identify codependencies and
knock-on effects between practices.
This had a negative impact in
some cases. For example, P4, P5,
P8, P11, and P12 wanted to remove
non-value-adding or problematic
practices but decided not to for fear
of such unknown codependencies.

(5) Quantitative research to
determine corelations between
use of individual practices and
(i) effectiveness of other
practices and (ii) project
success.

(6) In-depth qualitative research
to uncover more subtle, softer
effects of use/ non-use of
individual practices practice on
(i) effectiveness of other
practices and (ii) project
success.

Existing literature suggests that
there are “clusters” of practices
that are codependent, as opposed
to simply pairs of practices. None
of the project teams studied had
managed to identify any such
clusters.

(7) Quantitative research to
determine corelations between
use of groups or “clusters” of
practices and (i) effectiveness of
other practices within that
cluster and (ii) project success.

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 1, Article 2, Publication date: June 2010.

Method and Developer Characteristics for Effective XP Tailoring • 2:25

Table III. Recommendations for Software Practitioners When Tailoring XP

Recommendations for Software
Construct Finding Development Researchers
Identification of

project context
dependencies

Decision to adopt and tailor XP rarely
involved a formal analysis of
situational dependencies (1 of 16
projects studied—P5). The
subsequent mismatch directly
caused failure and future
abandonment of the method in some
cases.

(1) Conduct a formal analysis of
method’s suitability to the
project environment (e.g.,
Boehm and Turner’s [2003]
analysis model was used very
effectively by P5 for this
purpose).

Decision to adopt XP, as well as
subsequent tailoring and
implementation decisions, were
often driven by one single
“champion” without input from any
other team members or stakeholders
(8 of 16 projects studied—P1, P2, P3,
P4, P6, P8, P10, P16). In some cases
this resulted in a biased, uninformed
decision without adequate
consideration of negative
consequences of introducing XP.

(2) Involve all developers and
stakeholders in (i) the decision
to adopt or not adopt XP, (ii)
the tailoring of XP, and (iii) the
implementation of XP (e.g.,
P15 held three semistructured,
open-invitation workshops to
identify and resolve various
developer issues).

Rather than tailoring XP to the
environment, the organization or
team was tailored, sometimes
substantially, to suit the method (10
of 16 projects studied—P1, P2, P3,
P4, P6, P8, P10, P11, P12, P16).
However, this caused significant
problems in some cases (e.g., P16).

(3) Identify any organizational or
project “breaking points” (the
maximum tolerable change),
and ensure these points are
not crossed, regardless of what
XP requires (e.g., frequency of
iterations, degree of
collocation, average weekly
working hours).

Familiarity with a
range of methods
and method
fragments

Most developers using XP did not even
have sufficient knowledge of all XP
practices. As a result, the teams
studied tended to implement easier
practices and ignore more
challenging ones. These practices
were either omitted completely or
implemented poorly as a
result—only 25% of projects studied
implemented more than 50% of the
practices.

(4) Train developers on all XP
practices (e.g., 1-day in-house
tutorial, Web research).

Developers’ experiences of many XP
practices were often second hand or
textbook based, and insufficient for
informed tailoring.

(5) Include practical, hands-on
components in XP training
(e.g., work shadowing, games,
role playing (http://www.xp.
be/xpgame.html), mentoring).

(Continued on next page)

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 1, Article 2, Publication date: June 2010.

2:26 • K. Conboy and B. Fitzgerald

Table III. (Continued)

Recommendations for Software
Construct Finding Development Researchers

Few developers had experience with
even one alternative method with
which to substitute for or extend XP
practices. Experience of alternative
agile methods (e.g., LSD, Crystal)
was particularly lacking (3 of 16).

(7) Encourage developers to
learn and gain experience of
other methods (e.g., all 8
developers on P5’s project
team were tasked with
learning and evaluating one
agile method each (XP, XP
Lite, Scrum, DSDM, Crystal,
LSD, ASD, FDD).

What experience did exist amongst the
team was rarely elicited and used
when deciding how to tailor/extend
XP.

(9) Elicit developer knowledge
and experiences of other
methods and practices and
incorporate into the
tailoring/extension of XP.

Disciplined and
purposeful
approach to
method tailoring

There was often little monitoring or
control of adherence to XP practices
following the initial implementation.
In some cases this was beneficial as
the actual users of the method
decided how it should be used (e.g.,
P1). However, in some cases
nonadherence was due to laziness or
negligence and led to the gradual
abandonment of the method (P3, P6,
P12, P15).

(10) Frequently monitor
adherence to XP practices, to
ensure nonadherence is not
simply due to laziness or
negligence (e.g., at every
retrospective meeting, P15’s
team reviewed the use of each
practice, its pros and cons, and
whether it should be retained).

Conflict occasionally arose due to
inconsistent adoption of practices
across different members of the
team (P3, P6, P12, P15).

(11) Communicate
postimplementation tailoring
efforts across the team (e.g., at
standup or retrospectives).

(12) If a tailoring decision is
taken by an individual
developer, its impact on the
other team members should be
assessed and discussed (e.g., at
standup or retrospectives).

including the need to develop a framework to allow method comparison, and
the identification of clusters of independent practices within methods, allow-
ing developers to decompose a method into smaller fragments without fear of
adverse consequences. This would pave the way for the development of more in-
dependent and decomposable agile methods. It also highlights an urgent need
for researchers to learn more about what practices are interconnected and in-
terdependent. The researcher participants in this study felt that, like so many
other aspects of agile methods, very little is known as yet about such relation-
ships and the implications of removing certain practices. Further opportunities
for further research are listed in Table II.

In Table III we summarize our findings in relation to developer charac-
teristics and propose a number of recommendations for software engineering
practice which were found to aid tailoring in the projects studied.

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 1, Article 2, Publication date: June 2010.

Method and Developer Characteristics for Effective XP Tailoring • 2:27

This research focused solely on XP, interviewing both academics with active
research experience of the method and expert practitioners with substantial
hands-on exposure to it. While the recommendations for research and practice
in Table II and III are oriented toward XP, there is no reason to think that
these cannot be applied to software development methods in general. Future
researchers could replicate this study, applying the newly derived framework
to assess if the method tailoring problems and deficiencies identified in this
study in relation to XP also arise with other methods.

REFERENCES

ABRAHAMSSON, P., SALO, O., RONKAINEN, J., AND WARSTA, J. 2002. Agile Software Development
Methods: Review and Analysis. VTT Publications, Technical Research Centre of Finland, Espoo,
Finland, 478.

ÅGERFALK, P. AND FITZGERALD, B. 2005. Methods as action knowledge: Exploring the concept of
method rationale in method construction, tailoring and use. In Proceedings of the 10th IFIP
WG8.1 International Workshop on Exploring Modeling Methods in Systems Analysis and Design
(EMMSAD).

ÅGERFALK, P. AND WISTRAND, K. 2003. Systems development method rationale: A conceptual
framework for analysis. In Proceedings of the 5th International Conference on Enterprise In-
formation Systems (ICEIS).

AMBLER, S. 2007. Survey says. . .agile has crossed the chasm. Dr. Dobb’s J. World of Softw. Develop.
32, 8, 59–61.

AMBLER, S. W. 2002. Agile Modeling: Best Practices for the Unified Process and Extreme Pro-
gramming. John Wiley & Sons, New York, NY.

AUER, K. AND MILLER, R. 2002. Extreme Programming Applied—Playing to Win. Addison-Wesley,
Reading, MA.

AVISON, D. AND FITZGERALD, G. 2003. Information Systems Development: Methodologies, Tech-
niques and Tools. McGraw-Hill, London, U.K.

AVISON, D. AND WOOD-HARPER, A. 1991. Multiview: An Exploration in Information Systems Devel-
opment. Blackwell Scientific Publications, Oxford, U.K.

AYDIN, M. AND HARMSEN, F., ET AL. 2004. An agile informations systems development method in
use. Turk. J. Electron. Eng. 12, 2, 127–138.

BASKERVILLE, R. AND STAGE, J. 2001. Accommodating emergent work practices: Ethnographic
choice of method fragments. In Realigning Research and Practice in Is Development: The Social
and Organizational Perspective, B. FitzGerald, N. Russo, and J. DeGross, Eds. Kluwer, New York,
NY, 12–28.

BASKERVILLE, R., AND TRAVIS, J., ET AL. 1992. Systems without method: The impact of new tech-
nologies on information systems development projects. In The Impact of Computer Supported
Technologies on Information Systems Development, K. Kendall, J. DeGross, and K. Lyytinen,
Eds. North Holland, Elsevier Science Publishers, Amsterdam, The Netherlands, 241–269.

BECK, K. 2000. Extreme Programming Explained: Embrace Change. Addison-Wesley, Reading,
MA.

BECK, K. AND ANDRES, C. 2004. Extreme Programming Explained, 2nd ed. Addison Wesley, Read-
ing, MA.

BECK, K. AND BOEHM, B. 2003. Agility through discipline: A debate. IEEE Comput. 36, 6, 44–
46.

BECK, K. AND FOWLER, M. 2001. Planning eXtreme Programming. Addison-Wesley, Boston, MA.
BENYON, D. AND SKIDMORE, S. 1987. Towards a toolkit for the systems analyst. Comput. J. 30, 1,

2–7.
BOEHM, B. AND TURNER, R. 2003. Using risk to balance agile and plan-driven methods. IEEE

Softw. 36, 6, 57–66.
BOEHM, B. AND TURNER, R. 2004. Balancing Agility and Discipline: A Guide For the Perplexed.

Addison-Wesley, Boston, MA.

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 1, Article 2, Publication date: June 2010.

2:28 • K. Conboy and B. Fitzgerald

BOOCH, G. 1994. Object-Oriented Analysis and Design with Applications. Benjamin Gummings
Publishers, Redwood City, CA.

BOWERS, J., MAY, J., ET AL. 2002. Tailoring XP for Large Mission Critical Software Development.
XP/Agile Universe, Chicago, IL.

BRINKKEMPER, S. 1996. Method engineering: Engineering of information systems development
methods and tools. Inform. Softw. Tech. 38, 4, 275–280.

BRINKKEMPER, S., SAEKI, M. ET AL. 1998. Assembly techniques for method engineering. In Ad-
vanced Information Systems Engineering, G. Goos, J. Hartmanis, and J. van Leeuwen, Eds.
Springer, Berlin, Germany, 381–390.

BRINKKEMPER, S., SAEKI, M., ET AL. 1999. Meta-modelling based assembly techniques for situa-
tional method engineering. Inform. Syst. 24, 3, 209–228.

BROOKS, F. 1975. The Mythical Man-Month: Essays on Software Engineering. Addison-Wesley,
Reading, MA.

BROOKS, F. 1987. No silver bullet: Essence and accidents of software engineering. IEEE Comput.
20, 4, 10–19.

BROWN, B. 1968. Delphi Process: A Methodology Used for the Elicitation of Opinions of Experts.
RAND Corporation, Santa Monica, CA.

CAO, L., MOHAN, K., ET AL. 2004. How extreme does extreme programming have to be? Adapting
XP practices to large-scale projects. In Proceedings of the 37th Hawaii International Conference
on System Sciences. IEEE Computer Society Press, Los Alamitos, CA.

CLAYTON, M. 1997. Delphi: A technique to harness expert opinion for critical decision-making
tasks in education. Edu. Psychol. 17, 4, 373–387.

COAD, P. AND PALMER, S. 2002. Feature-Driven Development. Prentice Hall, Englewood Cliffs, NJ.
COCKBURN, A. 2001. Crystal Clear: A Human-Powered Software Development Methodology for

Small Teams. Addison-Wesley, Reading, MA.
COCKBURN, A. 2002. Agile Software Development. Addison-Wesley, Reading, MA.
COLEMAN, D., ARNOLD, P., ET AL. 1994. Object Oriented Development: The Fusion Method. Prentice-

Hall, Englewood Cliffs.
CONBOY, K. 2006. A Framework of agility in information systems development. Ph.D dissertation.

University of Limerick, Limerick, Ireland.
CONNORS, D. T. 1992. Software development methodologies and traditional and modern informa-

tion systems. Softw. Eng. Notes 17, 2, 43–49.
CRISPIN, L. AND HOUSE, T. 2003. Testing Extreme Programming. Pearson, Boston, MA.
CRONHOLM, S. AND GOLDKUHL, G. 1994. Meanings and motivates of method customization in CASE

environments—observations and categorizations from an empirical study. In Proceedings of the
5th Workshop on the Next Generation of CASE Tools.

DALKEY, N. AND HELMER, O. 1963. An experimental application of the Delphi method to the use
of experts. J. Institute Man. Sci. 9, 3, 458–467.

DAVIS, G. B. 1982. Strategies for information requirements determination. IBM Syst. J. 21, 1,
4–30.

DELBECQ, A. L., VAN DE VEN, A. H., ET AL. 1975. Group Techniques for Program Planning. Scott
Foresman and Company, Glenview IL.

DEMARCO, T. 1982. Controlling Software Projects: Management Measurement and Estimation.
Prenctice-Hall, Englewood Cliffs, NJ.

FITZGERALD, B. 1996. Formalised systems development methodologies: A critical perspective.
Inform. Syst. J. 6, 1, 3–23.

FITZGERALD, B., HARTNETT, G., ET AL. 2006. Customising agile methods to software practices. Eur.
J. Inform. Syst. 15, 2, 197–210.

FITZGERALD, B., RUSSO, N., ET AL. 2002. Information Systems Development: Methods in Action.
McGraw-Hill, New York, NY.

FOWLER, M. AND HIGHSMITH, J. 2001. The agile manifesto. Softw. Develop. 9, 8, 28–
32.

GLASS, R. 1991. Software Conflict: Essays on the Art and Science of Software Engineering.
Yourdon Press, Prentice Hall, Englewood Cliffs, NJ.

GREMILLION, L. AND PYBURN, P. 1983. Breaking the systems development bottleneck. Harvard
Busin. Rev. 61, 2, 130–137.

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 1, Article 2, Publication date: June 2010.

Method and Developer Characteristics for Effective XP Tailoring • 2:29

HARDY, C., THOMPSON, J., ET AL. 1995. The use, limitations and customization of structured systems
development methods in the United Kingdom. Inform. Softw. Tech. 37, 9, 467–477.

HARMSEN, F. 1997. Situational method engineering. Ph.D. dissertation. Twente University,
Enschede, Netherlands.

HARMSEN, F., BRINKKEMPER, S., ET AL. 1994. Situational method engineering for IS project ap-
proaches. In Methods and Associated Tools for the IS Life Cycle, A. Verrijn-Stuart and T. Olle,
Eds. North-Holland, Elsevier Science, Amsterdam, The Netherlands, 169–194.

HENDERSON-SELLERS, B. AND SEROUR, M. 2005. Creating a dual-agility method: The value of
method engineering. J. Datab. Manag. 16, 4, 1–23.

HIGHSMITH, J. 2004. Agile Project Management. Addison-Wesley, Reading, MA.
IIVARI, J. 1989. A methodology for IS development as organizational change. In Syst. Development

for Human Progress, H. Klein and K. Kumar, Eds. North-Holland, Amsterdam, The Netherlands,
197–217.

JENKINS, A., NAUMANN, J., ET AL. 1984. Empirical investigation of systems development practices
and results. Inform. Man. 7, 1, 73–82.

JOHNSON, D. AND CARISTI, J. 2003. eXtreme programming and the software design course. In
Extreme Programming Perspectives, M. Marchesi, G. Succi, D. Wells, and L. Williams, Eds.
Addison Wesley, Reading, MA, 47–59.

JOHNSON, J. 1995. Chaos: The dollar drain of IT project failures. Appl. Develop. Trends 2, 1,
41–47.

KARLSSON, F. AND AGERFALK, P. 2004. Method configuration: Adapting to situational characteris-
tics while creating reusable assets. Inform. Softw. Tech. 46, 9, 619–633.

KEIL, M., MANN, J., ET AL. 2000. Why software projects escalate: An empirical analysis and test
of four theoretical models. MIS Quart. 24, 4, 631–664.

KIRCHER, M., JAIN, P., ET AL. 2001. Distributed extreme programming. In Proceedings of the
Conference on XP2001—eXtreme Programming and Flexible Processes in Software Engineering.

KIRCHER, M. AND LEVINE, D. 2001. The XP of Tao: eXtreme programming of large open-
source frameworks. In Extreme Programming Examined. Addison-Wesley, Reading, MA, 463–
485.

KOCH, A. 2005. Agile Software Development: Evaluating the Methods for Your Organization.
Artech House, Norwood, MA.

KUMAR, K. AND WELKE, R. J. 1992. Methodology engineering: A proposal for situation-specific
methodology construction. In Challenges and Strategies for Research in Systems Development,
W. Cotterman and J. Senn, Eds. John Wiley & Sons Ltd., New York, NY, 257–269.

LEHMAN, M. 1978. Why software projects fail. In Proceedings of the Infotech State of the Art
Conference. Pergamon Press, New York, NY.

LINBERG, K. 1999. Software developer perceptions about software project failure: A case study.
J. Syst. Softw. 49, 1, 177–192.

LINSTONE, H. AND TUROFF, M. 1975. Introduction. The Delphi Method: Techniques and Applica-
tions, H. Linstone and M. Turoff, Eds., Addison-Wesley, Reading, MA, 3–12.

MARTIN, R. 2003. Agile Software Development: Principles, Patterns and Practices. Prentice-Hall,
Upper Saddle River, NJ.

MCBREEN, P. 2003. Questioning Extreme Programming. Addison-Wesley, Reading, MA.
MCCRACKEN, G. 1988. Qualitative Research: The Long Interview. Sage Publications, London, UK.
MCDOWELL, C., WERENER, L., ET AL. 2003. The impact of pair programming on student perfor-

mance, perception and persistence. In Proceedings of the 25th International Conference on Soft-
ware Engineering. Portland, OR.

MEYER, M. AND BOOKER, J. 2001. Eliciting and Analyzing Expert Judgment: A Practical Guide.
Society for Industrial Mathematics, Boston, MA.

MILES, M. AND HUBERMAN, A. 1999. Qualitative Data Analysis. Sage, London, U.K.
MIRBEL, I. AND RALYTE, J. 2006. Situational method engineering: Combining assemble-based and

roadmap-driven approaches. J. Requirement Engin. 11, 1, 58–78.
MOORE, C. 1987. Group Techniques for Idea Building. Sage Publications, London, U.K.
NAUMANN, J., DAVIS, G., ET AL. 1980. Determining information requirements: A contingency

method for selection of a requirements assurance strategy. J. Syst. Softw. 1, 4, 273–
281.

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 1, Article 2, Publication date: June 2010.

2:30 • K. Conboy and B. Fitzgerald

NECCO, C., GORDON, C., ET AL. 1987. Systems analysis and design: Current practices. MIS Quart.
11, 3, 461–476.

OFFENBEEK, M. AND VAN KOOPMAN, P. 1996. Scenarios for systems development: matching context
and strategy. Behav. Inform. Tech. 15, 4, 250–265.

OPPENHEIM, A. 1992. Questionnaire Design, Interviewing and Attitude Measurement. Continuum,
New York, NY.

POOLE, C. AND HUISMAN, J. 2001. Using extreme programming in a maintenance environment.
IEEE Softw. 18, 6, 42–50.

POPPENDIECK, M. 2001. Lean programming. Softw. Develop. Mag. 9, 5, 71–75.
RASMUSSON, J. 2003. Introducing XP into greenfield projects: Lessons learned. IEEE Comput. 20,

3, 21–28.
ROBEY, D. AND KEIL, M. 2001. Blowing the whistle on troubled software projects. Comm. ACM

44, 4, 87–93.
ROLLAND, C. AND PRAKASH, N. 1996. A proposal for context-specific method engineering. In Method

Engineering: Principles of Method Construction and Tool Support, S. Brinkkemper, K. Lyytinen,
and R. Welke, Eds. Chapman & Hall, Atlanta, CA, 191–208.

RUSSO, N., WYNEKOOP, J., ET AL. 1995. The use and adaptation of system development method-
ologies. In Managing Information & Communications in a Changing Global Environment, M.
Khosrowpour, Eds. Idea Group Publishing, Philadelphia, PA, 843–844.

SACKMAN, H. 1975. Delphi Critique. Heath and Co., Lexington, MA.
SCHWABER, C. AND FICHERA, R. 2005. Corporate IT leads the second wave of agile adoption. For-

rester res. rep. Forrester Research, Cambridgr, MA.
SCHWABER, K. 1996. Controlled chaos: Living on the edge. Amer. Program. 9, 5, 10–16.
SCHWABER, K. AND BEEDLE, M. 2002. Agile Software Development with Scrum. Prentice-Hall,

Upper Saddle River, NJ.
SOMMERVILLE, I., AND RANSOM, J. B. 2005. An industrial experiment in requirements engineering

process assessment and improvement. ACM Trans. Softw. Eng. Methodol. 14, 1–33.
STAPLETON, J. 1997. DSDM: Dynamic Systems Development Method. Addison Wesley, Reading,

MA.
STEPHENS, M. AND ROSENBERG, D. 2003. Extreme Programming Refactored. Apress, New York, NY.
STOTTS, D., WILLIAMS, L., ET AL. 2003. Virtual Teaming: Experiments and Experiences with Dis-

tributed Pair Programming. Extreme Programming/Agile Universe. Springer, New Orleans, L.A.
SULLIVAN, C. H. 1985. Systems planning in the information age. Sloan Busi. Rev. 26, 2, 3–11.
TAN, C. AND TEO, H. 2007. Training future software developers to acquire agile development

skills. Comm. ACM 50, 12, 97–98.
TOLVANEN, J. AND LYYTINEN, K. 1993. Flexible method adaptation in CASE—the metamodeling

approach. Scand. J. Inform. Syst. 5, 1, 51–77.
TRAUTH, E. AND O’CONNOR, B. 1991. A study of the interaction between information, technology

and society. Information Systems Research: Contemporary Approaches and Emergent Traditions,
H. Nissen, H. Klein, and R. Hirschheim, Eds., North Holland, Elsevier, Amsterdam, The Nether-
lands, 131–144.

TRUEX, D., BASKERVILLE, R., ET AL. 1999. Growing systems in emergent organizations. Comm.
ACM 42, 8, 117–123.

UHL, N. 1983. Using Research for Strategic Planning. Jossey-Bass, San Francisco, CA.
VIJAYASARATHY, L. AND TURK, D. 2008. Agile software development: A survey of early adopters. J.

Inform. Tech. Man. 19, 2, 1–8.
WAINER, M. 2003. Adaptations for Teaching Software Development with eXtreme Programming:

An Experience Report. XP/Agile Universe, Springer.
WOOD-HARPER, A., ANTILL, L., ET AL. 1985. Information Systems Definition: The MultiView Ap-

proach. Blackwell Publishers, Oxford, U.K.
WYNEKOOP, J. L. AND RUSSO, N. L. 1995. Systems development methodologies: Unanswered ques-

tions. J. Inform. Tech. 10, 2, 65–73.
YIN, R. 2003. Case Study Research: Design and Methods. Sage Publications, Thousand Oaks,

CA.

Received December 2007; revised August 2008, January 2009; accepted March 2009

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 1, Article 2, Publication date: June 2010.

