
Theory-Oriented Software EngineeringI

Klaas-Jan Stol∗, Brian Fitzgerald

Lero—The Irish Software Engineering Research Centre, University of Limerick, Ireland

Abstract

There has been a growing interest in the role of theory within Software Engineering (SE) research.
For several decades, researchers within the SE research community have argued that, to become a
‘real’ engineering science, SE needs to develop stronger theoretical foundations. However, so far,
the role of theory is neither fully appreciated nor well understood in SE research. Without a good
common understanding of what theory is, what it constitutes in SE research, and the various roles
it can play in SE research, it is difficult to appreciate how theory building can help to strengthen
SE research. In this paper we discuss the importance of theory and conceptualization, and review
the key components that comprise a theory. We then present the Research Path Schema (RPS),
which is an adaptation of an analytical framework from the social sciences. The RPS defines a
research study as consisting of three components: some phenomenon, system or substance that a
researcher is interested in; some technique or method to study that substance; and some form of
conceptualization or theory that provides an explanation for, or abstraction of the observations
made in a study. Different research studies have a different archetypical ‘architecture,’ depending
on the selection of these three components. Consequently, the role of the conceptualization
or theory will be different for each archetypical study design, or selected research path. We
conclude this paper by outlining a number of implications for future SE research, and argue for a
Theory-Oriented Software Engineering research perspective, which can complement the recent
focus on Evidence Based Software Engineering.

Keywords: Theory-Oriented Software Engineering, software engineering research, theory
fragment, theory building, empirical research, Research Path Schema

1. Introduction

In the last decade or so, there has been an increasing interest in Evidence-Based Software Engi-
neering (EBSE). This paradigm gained significant traction with the seminal paper by Kitchenham
et al. in 2004 with the title ‘Evidence-Based Software Engineering’ [2]. The premise underlying
the EBSE paradigm is that SE researchers should conduct studies that generate evidence for prac-
titioners so as to enable them to make well-informed decisions regarding software development

IThis is a revised version of the paper “Uncovering Theories in Software Engineering” presented in the 2nd SEMAT
Workshop on a General Theory of Software Engineering [1].
∗Corresponding author
Email addresses: klaas-jan.stol@lero.ie (Klaas-Jan Stol), bf@lero.ie (Brian Fitzgerald)

Preprint submitted to Elsevier

Please cite as: K Stol & B Fitzgerald. Theory-Oriented Software Engineering,
accepted to appear in: Science of Computer Programming (Special Issue on
General Theories of Software Engineering)

techniques, methods and tools. There has been an increasing focus on conducting empirical studies
within software engineering, a development referred to as ‘empirical software engineering.’ This
is reflected by a number of dedicated conferences (ISESE,1 ESEM,2 EASE3) and a specialized
journal (Empirical Software Engineering). Despite this increased focus on empirical research in
software engineering, practice in software engineering is still far from ‘evidence-based.’

To organize, aggregate and synthesize empirical evidence, Kitchenham et al. [2] proposed the
Systematic Literature Review (SLR) in SE research, borrowing from the medical research domain
where Evidence-Based Medicine is well established. In SE research, too, SLR is seeing widespread
adoption; one of the SE field’s prominent journals (Information and Software Technology (IST))
explicitly solicits SLR submissions. Of the 25 most-cited papers in IST up to February 2014,
more than half (13) were SLRs or mapping studies. Systematic reviews can be an effective
means for triangulating multiple sources of data (i.e., studies) to answer research questions with a
considerable level of confidence.

However, with this strong focus on empiricism, we argue that we cannot see the “theoretical
trees” through the woods of evidence. Evidence by itself must always be considered in context—
findings from one study done in a certain context often do not apply in other contexts. What is
missing is a clear understanding of the role of theory in SE research. We have observed a number
of challenges in SE research:

• A lack of appreciation for conceptualization in software engineering research;

• A lack of agreement on what theory is, and is not, in software engineering research;

• A lack of awareness of the purpose and goals of theory in software engineering research.

We briefly discuss each of them. Researchers may not see the need for theorizing, and consider
it a task for “philosophers.” One question that often arises in this discussion is whether or not
software engineering is a branch of computer science or an engineering discipline [3, 4, 5, 6, 7].
The term “Software Engineering” was coined in a provocative way [8], partly because SE
researchers at the time felt that the work they were doing was not ‘science’ but more similar to
engineering. Including the term ‘engineering’ was one attempt to draw the interest of practitioners
and involve them in the research so as to learn from them and codify their knowledge. The extent
to which this goal has been achieved has been limited thus far—few practitioners read software
engineering research articles [9]. We agree that Software Engineering can be considered a branch
of engineering, in that software engineers must possess extensive knowledge of sound software
design principles. However, such knowledge can be codified in the form of theories about what
constitutes a sound design and what does not. One could, for instance, consider the set of software
architecture patterns to be a form of theory: some patterns, or architectural styles, are more
suitable to achieve certain architectural qualities (e.g., performance, resilience) than others. This
‘theory’ can inform practitioners in designing or evaluating a software system [10]. We address
this point in more detail in Section 2.1.

Secondly, there is no common agreement on what theories should look like in SE [11].
Researchers may not be familiar with theorizing, perhaps due to the fact that it was not a part
of their research training. As a result, researchers may not have a good understanding of what

1International Symposium on Empirical Software Engineering
2International Symposium on Empirical Software Engineering and Measurement
3International Conference on Evaluation and Assessment in Software Engineering

2

constitutes theory, its role in research studies, and how to recognize it. The SEMAT 4 initiative
aims to define a General Theory for Software Engineering that can serve as a foundation for
software engineering research. As Bourgeois [12] wrote about behavioral theory, we believe that
SE research is too immature for an all-inclusive unifying general theory, and that development of
so-called “middle-range” theories is an important step towards maturity of SE research. Merton
[13, p. 38] referred to these as

lying between the minor but necessary working hypotheses that evolve [...] in [...] day-to-day research and
the all-inclusive systematic efforts to develop a unified theory.

Section 2.2 elaborates further on this point.
The usefulness of theories is widely recognized by other disciplines; after all, “nothing is so

practical as a good theory” [14], but its importance has not yet been widely recognized in the SE
research community. Theories provide a vocabulary for different researchers to discuss a topic of
study, which helps to put research studies in context and converge towards more focused topics of
research. Another important function of theory is to make explanations and understandings of
how the world works explicit [15], which makes knowledge transferable. As Gregor pointed out
[16, p. 613]:

theories are practical because they allow knowledge to be accumulated in a systematic manner and this
accumulated knowledge enlightens professional practice.

A number of authors have pointed at more mature and established disciplines, such as
physics and the social sciences, and argued that SE research also needs to develop theories
[17, 18, 19, 20, 21]. Section 2.3 discusses the role and purpose of theory in more detail.

Clearly, an improved awareness of and attention to theory in software engineering will not
happen overnight. However, we believe that by gaining a better understanding of the importance
and role of theory in software engineering, the community can slowly evolve to adopt, what we
term, Theory-Oriented Software Engineering (TOSE), which complements EBSE. Consequently,
the purpose of this paper is as follows:

To increase awareness of the importance, purpose and role of theory in software
engineering research.

In Section 3 below, we present an analytical framework adapted from Brinberg and McGrath
[22] which we term the Research Path Schema (RPS). The RPS defines a number of ‘research paths’
that represent archetypical research designs. This framework can be used to better understand the
roles of theory in research in general. Using the RPS, it becomes clear that many studies in SE
research do not present theories as found in other disciplines, but that the SE literature does offer
many theory fragments, which are products of what Weick called theorizing [23].

The remainder of this paper proceeds as follows. Since the term theory can mean different
things to different researchers [24, 23], we discuss the nature, origins, and purpose of theory in
Section 2. Section 3 presents the Research Path Schema and illustrates this with some examples.
Section 4 uses the RPS to analyse three topics from software engineering research that have been
studied from different research perspectives. This is followed by a discussion of the implications
for the practice of future software engineering research in Section 5.

4Software Engineering Method and Theory (www.semat.org)

3

2. Theory: Motivation, Definition, Purpose

The use and role of theory is not widely understood and appreciated within SE research. This
section provides background information on this topic and extends the discussions of the three
challenges briefly discussed in Section 1. Firstly, Section 2.1 outlines the need and importance
of conceptualization in research. This is followed by a presentation of what (and what not)
constitutes ‘theory’ in Section 2.2. Section 2.3 summarizes the purpose of science and the goals
of theory, followed by an overview of efforts within SE research relating to the use of theory in
Section 2.4.

2.1. The Importance of Conceptualization

Software Engineering is a multi-disciplinary field, and as such, research studies are much
more varied and heterogeneous than in, say, the natural sciences such as physics. Much of the
research in physics is of a quantitative nature, with “standardized” approaches to conduct research
and present results. In SE, in contrast, research studies are much more heterogeneous, with a
wide range of research approaches, methods and techniques, both quantitative and qualitative.
Various research methods, approaches and techniques have been imported from other disciplines,
in particular the social sciences; some are more common (survey [25], case study [26], grounded
theory [27]) than others (ethnography [28], repertory grid technique [29]).

As a result of this heterogeneity, assessing an SE paper’s scientific contribution can be
challenging. A common remark found in referees’ reports is the question “So what?” A paper
may present interesting findings, but if these are not further interpreted or conceptualized, the
scientific contribution may be insufficient. Dubin [30, p. 16] expressed this sentiment as follows:

The distinction [between reporting and ‘doing science’] lies in whether the information is gathered for its
own sake, or whether it is used to measure the values associated with ‘things’ [...], the relationships among
two or more of which is the focus of attention. The first procedure we call description; the second we call
research.

In the same vein, Suddaby [31, p. 636] observed that a common problem with Grounded
Theory (a research method originating from the social sciences which sees increasing uptake in
SE research) is a “a failure to ‘lift’ data to a conceptual level.” Nisbett [32, p. 4] described how
the early Mesopotamian and Egyptian civilizations made systematic observations, but that only
the Greeks made significant progress by explaining their observations in terms of the principles
underpinning them. Hall et al. [33], citing Robson [34] argued that “without theory the research
may be easier and quicker, but the outcome will often be of little value.” A lack of conceptualization
may also apply to secondary studies, such as Systematic Literature Reviews (SLR). In this context,
conceptualization can be done through synthesis of findings of a set of so-called primary studies.
Cruzes and Dybå [35] observed that synthesis of findings in SLRs is often poorly performed.

Figure 1 presents a continuum of conceptualization. The dotted line distinguishes “description”
from “research”; merely reporting empirical data without conceptualization is “description”
(using Dubin’s terminology). Reports that present an empirical study with conceptualization, or a
conceptual paper that presents concepts or theory only, are called “research.” There is, of course,
no clear and hard boundary between the two, as indicated by the dotted line.

It is important to consider the role of ‘descriptive’ studies, as the figure may suggest that
these are not ‘research.’ Some authors have argued that ‘qualitative description’ can be a valued
end-product on its own, whereby data can be presented without any theoretical or conceptual
framework [36]. While we agree that descriptive studies can be valuable (as researchers we have

4

!"#"$%&'(

!"#$%$&'())

*+,-.)

/01&2#+,'()

*+,-.)

!"#$%$&'()

-'+')01(.)

!"#$%$&'()-'+')'1-)

&01&2#+,'($3'401)

5620%.)

01(.))

)"#&%*+,-.(

72#0%418)

!"#$%%

&"'&$()*+,-.+/"'0%%

,$11%2+)+%

3$11%

&"'&$()*+,-.+/"'0%

4"#$%2+)+%

/
&,
0
*12

(
3
-
.
1"
.
1#(

Figure 1: Continuum of conceptualization.

published numerous descriptive studies ourselves), there is always a level of conceptualization or
analysis that requires a researcher to move beyond a mere description, or, to declare a starting
point (e.g., a framework) that identifies aspects of a topic that are studied. When no explicit
theoretical framework or lens is declared, it remains implicit, but it nevertheless exists. Checkland
[37, p. 7] captured it well:

If you are to take part in a change process and learn from it in a research sense...it is essential to declare in
advance the intellectual framework in terms of which what counts as learning will be defined...That is a
condition for moving beyond the anecdotal.

A report will always present a selection of findings presented in a particular way, and decisions
made in preparing such a report are by necessity influenced by an author’s preferences, interests
or beliefs—and are therefore subjective.

Reynolds [38, p. 43] argued that, “unless the ‘conceptualization’ is explicitly described
other scientists cannot understand it and probably will not adopt it.” Thus, we argue that
conceptualization is an important aspect of good research studies. Conceptualization is closely
related to theorizing, or the process of building theories [23]. We have observed an increasing
level of attention for the role of theory within software engineering research [17, 18, 20]. However,
conceptualization and theory building have not been recognized to be as important as empirical
research within the SE research community. This lack of attention for theory building is somewhat
surprising, given the various calls to do so over the years. For example, Basili and Zelkowitz [39]
wrote (emphasis added):

any future advances in the computing sciences require that the empiricism takes its place alongside theory
formation and tool development.

In a similar vein, Broy [40, p. 19] argued that:

engineering disciplines must be based on scientific practices and theory to justify their approaches and to
give scientific evidence for why and where their methods work properly.

Figure 2 presents a research cycle (adapted from Lehman and Ramil [41]) that illustrates the
role of theory in relation to empirical research, and as such it represents “the flip side” of the
empirical “coin.” (Similar diagrams representing the research process are offered by Bunge [42, p.
9], Shaw [43], Carroll and Swatman [44], Lynham [15], and Endres and Rombach [45]. Wieringa
et al. [46] presented an engineering cycle for the requirements engineering subdiscipline.)

Sutton and Staw cite Kaplan [47] in asserting that “data describe which empirical patterns
were observed, and theory explains why empirical patterns were observed or are expected to
be observed” [24, p. 374]. Theory not only informs the design and motivation of new research
studies, but also forms the basis of “rules” and guidelines for practitioners.

5

!"#$%&%$#'()"*

+,&-'"'()"*

.%$/01()"*

234$%5'()"*
+6&0%01'-*

7$"$%'-08'()"*

9)%6'-*:;$)%<*

9)%6'()"*

+6&0%01'-*

=5-*

:;$)%$(1'-**

=5-*

!"#$%&'()*+,-.)-/'01")

2$"3/4+,560758$")

9/"/%560758$")

*+,-.))

/:/3,8$") >$#$%60"'()"*)?*

@A-$4B*7A0/$-0"$4*

;/%0<58$")

*=$%+3,+)

Figure 2: Research cycle.

What we observe in much of the SE literature, however, is that the formation of formal theory
is left implicit or skipped altogether, which is indicated by the “shortcut” in the figure. Such
guidelines do not provide the justifications that underpin them – in other words, there is no deep
understanding as to the why of such guidelines. Chalofsky expressed this well when he wrote:

“Professionalization comes from theory and research: the ‘why’ instead of the ‘how to’ ” [48].
One question that may arise is where to start in this cycle of theorizing and empirical investiga-

tion. Reynolds [38] describes two approaches: “research-then-theory” and “theory-then-research.”
The former refers to conducting empirical studies, based on which one develops a theory (also
known as the Baconian strategy [38, Ch. 7]); the latter starts with a theory that informs the design
of a study that can subsequently be executed. Which approach to take depends, of course, on how
much theory is available on a particular topic. Nascent research areas would typically take the
research-then-theory approach, whereas more mature areas could rely on (and refine) existing
theories to further advance the field. Glass pointed out that in software engineering, practice is
often ahead of theory [49]; what we observe indeed is scientific research following developments
in SE practice. Some examples are the rise of agile methods, global software development and
open source software development. All three phenomena emerged in practice, after which the
software engineering research community started to conduct exploratory studies, that aimed at
establishing an understanding of these topics.

2.2. What Theory Is and Is Not

The question What is Theory? has been a topic of much discussion in other disciplines
(see e.g., [50]). There are a wide variety of methods and approaches proposed for constructing
theories [51, 12, 30, 15, 38, 20, 52]. Weick observed that many descriptions of theory building
wrongfully suggest that it is a mechanistic process, “with little appreciation of the often intuitive,
blind, wasteful, serendipitous, creative quality of the process” [53, p. 519]. Bourgeois argued
that such steps are not discrete processes, but that the presentation of a theory may suggest a
sequential ordering of thought [12] (see also [54]). We agree that constructing theories is not a
linear, sequential process consisting of a number of steps, but that the various activities may occur
in parallel. The research cycle depicted in Figure 2 presents a graphical representation of this
sentiment, where the activities of theorizing and gathering empirical evidence is an alternating
process.

The aim of this section is not to present a final answer to the question how theory is constructed,
but rather to present a brief overview of the key components that are widely accepted in other
disciplines to be a part of theories, as well as to make the reader familiar with the terminology
commonly used. In what follows we briefly summarize the key components of a theory. Our

6

discussion is by necessity incomplete—the topic of theory building and theorizing has been
addressed by numerous authors in many articles and books. We focus primarily on so-called
variance theories rather than process theories [55]. Variance theories focus on explaining variables
and relationships among them whereas process theories explain how a sequence of events or
activities result in a certain outcome. Ralph [56, 57], for instance, discusses process theories in
the context of software design.

The main elements of a (variance) theory are its constructs. In SE research, two example
constructs are program size and software quality. In order to measure the size of a software
program, one needs to operationalize that construct, using a measure or metric. This can be
done through a variety of empirical indicators: lines of code (LOC), memory footprint (during
runtime), number of classes (in object-oriented languages), and size of the compiled object code.
To operationalize “software quality,” one could choose to count the number of known defects, or
select a quality attribute (e.g., performance) and operationalize that with performance metrics
such as start-up and response time. How well a metric represents the construct affects a study’s
construct validity: does the researcher measure what she intended to measure? Not all constructs
are directly measurable; these hypothetical constructs [38] may still be useful to build a theory.
Wieringa et al. [46] cited “gravity” and “organizational culture” as examples of hypothetical
constructs.

A theory also defines the relations among constructs and how they interact with one another.
These relations may be of different forms, of which causality is perhaps best known and arguably
the most interesting. In a SE context, one relation that a researcher could suggest is between
program size and software quality, such as, the bigger a software program is, the lower the quality.
Theories typically have a limited scope, indicated by their boundaries. That is, theories are likely
to be only valid under certain conditions. This is directly related to the concept of generalizability,
or external validity.

A theory may have different states. Each state may have a different set of laws of interaction
that apply only to that state. For instance, certain software development practices (e.g., peer-
review) may result in high-quality code in Open Source projects, but only in popular projects (in
other words, less popular Open Source projects may not achieve the same level of code quality).
A theory can transition from one state to another. Some state transitions may be invalid. Weber
[52] illustrated this with an example of a theory about human life, which has two states: alive and
dead. Whereas the transition from alive to dead is “lawful,” the reverse transition is generally
“unlawful.”

Constructs, relations, boundaries and states are all elements of a theory that must be considered
in the activity of building a theory. Once constructed, a theory is put to use. Reichenbach refers to
these contexts as discovery and justification, respectively [58, 59]. To that end, one would define
a set of propositions; these are concerned with making predictions about a theory’s constructs.
Propositions are logically derivable from a relation, whereas for the reverse one needs to make
an “inductive leap” [30, p. 170]. One example of a “theorizing” study that presented a number
of propositions is reported by Crowston et al. [60]. Based on the literature of OSS and existing
theories, Crowston et al. offered a number of propositions to guide further research. A second
example is by Morgan et al. [61], who derived a number of propositions related to creation and
capture of value with open source software. Unlike the paper by Crowston et al. mentioned above,
Morgan et al. further developed and refined their propositions through a number of empirical case
studies.

Hypotheses are to propositions what measures are to constructs. That is, hypotheses (empirical
level) are instantiated propositions (theoretical/conceptual level), through the replacement of

7

constructs within these propositions by measures. For instance, to further develop the example
given above, a researcher could hypothesize that, as a software program grows in terms of lines of
code (size construct), the number of defects (software quality construct) will increase in a linear
fashion. A proposition can therefore have different instantiations, each of which operationalizes
the constructs differently.

There is a fine line between what is a theory, and what is not. In particular, Sutton and Staw
outline a number of elements that they argue are, by themselves, not theory [24]—we suggest for
each how an author could make progress in building a theory:

• References; Sutton and Staw argue that references (to prior literature on a topic) are
sometimes used as “a smoke screen to hide the absence of theory.” In order to develop a
theory, an author could synthesize the referenced literature and identify the key concepts
which can become constructs of a theory-to-be. As mentioned, while systematic reviews in
software engineering research are very popular, they often lack in their quality of synthesis,
which results in a mere classification of references.

• Data; while descriptions can be a source to build theories from, they do not constitute a
theory [62]; this corresponds to Dubin’s distinction between “description” and “research”
discussed above, and the “continuum of conceptualization” in Figure 1. Descriptions can
be very useful in new research areas, where phenomena are not well understood or defined.
However, there must be some form of structuring in order to organize the presentation of
the topic. A common way to do this is by means of an analytical framework. For novel
research areas, existing theories or frameworks can be applied, whereas for areas that have
already attracted a body of knowledge, a new framework can be derived from that literature.

• Lists of variables or constructs; a mere list of concepts and their definitions are what
Homans [63, p. 957] described as “a dictionary of a language that possesses no sentences.”
In this case, a researcher should aim at identifying and establishing relationships between
the constructs, i.e., “forming sentences with the words in the dictionary.”

• Diagrams; often consisting of “boxes and arrows” [50], they can be helpful in providing
structure, but “Some verbal explication is almost always necessary” [24]. Indeed, graphical
representations are often presented to help a reader to understand a topic in one glance, in
particular if the description of the topic at hand (i.e., the theory) is extensive. However,
without further description, the “boxes” and “arrows” by themselves do not constitute a
theory.

• Hypotheses; a mere set of hypotheses without further justification or clarification does not
constitute a theory. On the other hand, a set of hypotheses (or better still, propositions) that
are derived from either the literature or a set of empirical findings would be a sound starting
point for developing a theory.

While these elements by themselves are not theories, they can be parts of a theory. As Weick
wrote, arguing that the focus should be on the process (of theorizing) rather than the product:

“What Theory is Not, Theorizing Is” [23]. In this context, we use the term theory fragment, to refer
to something that can develop into a theory. We argue that, while fully developed theories in SE
research may be rare, the field has many theory fragments. One of this paper’s goals is to show
how these can be identified.

8

2.3. The Purpose of Science and the Goals of Theory
Reynolds [38] discussed five purposes that science should serve: (i) to provide a method to

organize and categorize things (i.e., to define a typology or taxonomy); (ii) to predict future
events; (iii) to explain past events; (iv) to provide an understanding of events, and (v) to potentially
control events. Reynolds argued that predicting future events (iii) and explaining past events (iv)
differ only in a temporal perspective (that is, past v. future) but are similar otherwise.

Once constructed, theories may have different goals, independent of the degree to which
a theory has been validated. Gregor [16] presented a taxonomy of theory types observed in
Information Systems (IS) research. Previously, this taxonomy was used in an analysis of theory
use in SE research [17]. We discuss each type briefly below.

Analysis; says what is; provides a description, but no explanation of causality. There is
generally disagreement over whether a typology can be labeled as “theory” [24]. Some would
disqualify this as theory, arguing that the primary goal of theory is to answer how, when, and
why questions, rather than what questions [62]. However, on the other hand, when using the
term “theory” more freely, typologies are useful in communication and education. For instance,
SE students could study the “theory” of software evolution, and learn the different types of
maintenance activities as identified by Swanson [64].5 This would qualify as providing a typology,
which is one of the purposes of science [38]. Note that a typology differs from a “list of variables
or constructs” in that the former links the various viable “values” (e.g, adaptive v. corrective
maintenance), whereas the latter may consist of a set of unrelated constructs.

Explanation; says what is, how, why, when, and where. This type of theory provides
explanation (insight) but has no predictive power. Though Reynolds used the word “explanation”
in the context of explaining past events, what Gregor [16] meant here is what Reynolds referred
to as providing an understanding [38].

Prediction; says what is, and what will be. This type of theory provides predictions and
testable propositions, but no explanatory power.

Explanation & Prediction; combination of explanation and prediction as described above.
Design and action; says how to do something. This type of theory provides prescriptions

for constructing artifacts (such as methods and techniques). Theories for design and action have
received significant attention in the information systems field [16]. This is an area that has been
studied using different labels, of which ‘design science’ is perhaps the best known. However, there
is as of yet no agreement on the role of theory in design science—some authors exclude theory
development from design science [65]. Interested readers are referred to some of the seminal
papers by Nunamaker et al. [66], March and Salvatore [67], and Gregor and Jones [68].

2.4. Theory in Software Engineering
There is increasing agreement that Software Engineering is not merely a branch of Computer

Science [3]. In fact, Offutt [7] wrote that “Software Engineering is Engineering, Not Science.”
However, we agree with Broy that: “An engineering discipline without a theory cannot work”
[40]. As pointed out by Offutt, mechanical engineering relies on physics (a traditional field with
well-developed theories; a “normal” science as Kuhn would argue [69]). However, there does not
seem to be a “primary” or fundamental research field with well-developed theories on which SE
can depend. For instance, while mechanical engineers in designing and building structures such
as buildings and bridges, can depend on well-defined theories and laws from physics, software

5Adaptive, corrective or perfective maintenance.
9

engineers do not seem to be able to rely on such theories in SE. Interestingly, there is an increasing
attention to social and human aspects in SE, so one potential fundamental field can be the social
sciences that have studied team performance, for instance. However, clear laws, rules and theories
about how to build reliable, resilient and high-performance software systems are not generally
defined nor taught.

There have been a few studies of the use and development of theory in SE research; we
summarize these next.

Hannay et al. [17] conducted an SLR on the use of theory in software engineering experiments.
They found that of the 113 published experiments, 24 studies used a total of 40 theories. A similar
study was conducted by Hall et al. [33], who investigated the use of theories in studies of software
engineers’ motivation. One of their findings was that many of the 92 studies they analyzed were
not underpinned by the “classic” theories of motivation that originated in the social sciences.

Endres and Rombach [45] composed an extensive collection of empirical observations, laws
and theories. For instance, one law is: “Well-structured programs have fewer errors and are easier
to maintain” [45, p. 74]. While this law may have some predictive power, there is no justification
or explanatory power, and as such practitioners may feel such statements are unsatisfactory.

Sjøberg et al. [20] presented a set of steps to construct theories for the domain of software
engineering. In addition, they proposed a template with four archetype concepts: (i) actor,
(ii) technology, (iii) activity, and (iv) software system. Furthermore, they proposed a UML-
based diagrammatic notation. Shull and Feldmann [70] discussed the construction of theories
from multiple and different sources of evidence. This is particularly relevant to SE given the
aforementioned heterogeneous nature of research in this field.

Both Sjøberg et al. [20] and Runeson [71] argued that theories must be relevant to practition-
ers. We disagree with this as an extreme position however since we believe that theory plays an
important role in software engineering research, and as such, one purpose of theory is to guide and
support further research. So, instead of practical utility, a theory may also have scientific utility
[72]. The researcher’s “tools” need not be directly relevant to practitioners. Even theoretical, or
“conceptual” research may, in the long run, be useful and relevant to practitioners. Conceptual
papers can offer useful points of view, concepts, or analytical frameworks that can help other
researchers to revisit a certain topic of study. One example of this is a paper by Jansen and
Bosch [73], entitled “Software Architecture as a Set of Architectural Design Decisions,” which
defined “the notion of software architecture as the composition of a set of explicit architectural
design decisions.” This notion has had considerable impact on the software architecture research
community—the paper has more than 300 citations per February 2014, and soon after its publica-
tion, other researchers developed tool support for capturing design decisions [74]—which clearly
does have practical utility.

3. The Research Path Schema

This section presents the Research Path Schema (RPS), which is the result of our adaptation of
the Validity Network Schema (VNS) proposed by Brinberg and McGrath [22]. The VNS, as the
name suggests, was originally proposed to explain how the term “validity” has different meanings
depending on the type of research study. This term has been a topic of much discussion in the
field of consumer research [75], where epistemological considerations have received much more
attention than in SE research. The VNS is a very complex and rich framework; however, for
our purpose, namely that of improving the way we think about theory in software engineering

10

!"#$%&$

'()%#*"+"+$

,%-.")#/01$

2%304-$

!/5+#0-67"$

2%304-$

8"#*%2%1%94.01$

2%304-$

!"#$%&$

:5+";706%-+$

!#/2($<"+49-$

!(+#"3=2;47"-$;"+"0;.*$

!"#$%&'()*+,&-."/&

01)(23.45,.6&

-."/&

7%85"/(49.6&

-."/&

>"+"0;.*$?1"3"-#$

<%304-$
@-#";3"240#"$

;"+"0;.*$);%2/.#$
A4-01$+#")$4-$

;"+"0;.*$);%."++$

Figure 3: Research Path Schema (RPS)

research, we made a number of changes to simplify the model. In order to be able to refer to
this simplified model, we termed this the Research Path Schema so as to clearly distinguish from
the model that Brinberg and McGrath originally developed. Clearly, the original principles and
ideas underpinning the RPS are derived from the insights by Brinberg and McGrath [22]. The key
differences include:

• The VNS focuses on the validity of studies, whereas the RPS focuses on the role of theory
and conceptualization;

• The research paths in the VNS have been renamed for the RPS so as to prevent ambiguity
that could arise in a software engineering context. In particular, the ‘experimental’ path
has been renamed the ‘study design’ path (as the term ‘experimental’ may imply the use
of the ‘experiment’ method); the ‘empirical’ path has been renamed the ‘observational’
path (as the term ‘empirical’ could imply that the other paths do not represent empirical
research); finally, the ‘theoretical’ path has been renamed the ‘hypothetical’ path (as the
term ‘theoretical’ could imply that the other paths may not focus on theories).

• The VNS makes a number of additional assumptions, which we are ignored in the RPS.
For instance, the VNS assumes a three-step research process, with the research proper is
conducted in step two. These details are not considered in the RPS.

The remainder of this section presents the RPS in more detail.

11

3.1. Domains of the Research Path Schema
Research designs comprise a number of building blocks, or different types of elements.

Brinberg and McGrath [22, p. 14] argued that:

research involves (a) some content that is of interest, (b) some ideas that give meaning to that content, and
(c) some techniques or procedures by means of which those ideas and content can be studied.

These three aspects are referred to as the substantive, conceptual, and methodological domains,
respectively. Examples of each domain are presented in Table 1. It should be noted that this
definition does not imply or suggest any specific ontological or epistemological stance, a topic
that so far has been largely ignored in SE research. The debate regarding questions such as
What is knowledge? and How should knowledge be acquired? (discussed in more detail by
Fitzgerald and Howcroft [76]) is irrelevant in the discussion of the RPS. Therefore, dichotomies
such as positivism versus interpretivism, qualitative versus quantitative, and exploratory versus
confirmatory research need not be considered in this discussion. The choice of research method,
theoretical framework and topic of study are orthogonal to the RPS.

3.1.1. Substantive domain
The substantive domain is the domain of phenomena and real-world systems that can be a

topic of study. This is the substance that, in the words of Brinberg and McGrath [22, p. 33],
“is ‘there’ prior to and independent of the intellectual enterprise we call research.” This is the
content that a researcher is interested in. In SE research, elements of the substantive domain are,
for instance, open source software [77] and developer motivation [78]. Each of these topics are
phenomena as found in the real world, and are considered by researchers to be worthy of study.
Besides ‘phenomena,’ that is, trends or developments that can be observed in practice, in software
engineering research the substantive domain also includes real-world systems, which could be
instances of phenomena. For instance, within the open source ‘phenomenon,’ one instance is the
Linux kernel project, which has been the subject of many research studies [79].

3.1.2. Conceptual domain
Whereas the substantive domain deals with “subject matter,” (“substance”), the conceptual

domain deals with concepts, models, frameworks, and theories. These conceptualizations are
used to describe the properties of, and relationships among the ‘things’ found in the substantive
domain. This domain also also contains any conceptual paradigm that may underpin the research.
A conceptual paradigm is a set of paradigmatic assumptions and has an important impact on what
a researcher may or may not discover. Van de Ven [55, p. 19] emphasizes the importance of theory
in research design as follows:

Selecting and building a theory is perhaps the most strategic choice that is made in conducting a study. It
significantly influences the research questions to ask, what concepts and events to look for, and what kind
of propositions or predictions might be considered in addressing these questions.

For instance, Pfleeger [80] pointed out that the model used by nineteenth-century physics was
faulty; scientists in that time never considered light as an electromagnetic wave, and as a result,
they never observed light particles. In other words, following Kuhn [69], the conceptual paradigm
defines what research problems are considered important to be studied, as well as any expectations
with respect to the answer. Within SE research, the conceptual domain includes the models that
we build to reason about software systems, or frameworks to analyze real-world systems, or even
to analyze research artifacts such as analytical or comparison frameworks.

12

Table 1: Examples for each of the three domains.

Domain Examples

Substantive Phenomena e.g., Open Source software development, crowdsourcing, software architecture;
systems e.g., Linux, software development tools (as systems)

Conceptual Analytical and comparative frameworks, theories, hypotheses, propositions, concepts,
abstractions, (mathematical) models, design patterns, Lehman’s Laws

Methodological Case study, survey, experiment, ethnography, repertory grid technique, comparative analy-
sis, instruments, techniques, modes of treatment, content analysis, metrics

3.1.3. Methodological domain
The methodological domain of research refers to the methods and techniques to gather data

about a study topic (substantive domain) or theories (conceptual domain). Such methods may
be “modes of treatment,” comparison techniques, or other research methods well known in SE
research, such as case studies, surveys, and controlled experiments. Also included in this domain
are any research techniques or approaches that a researcher may be interested in, for instance to
evaluate its use in a certain setting. For example, Edwards et al. [29] discussed how the Repertory
Grid Technique can be used in software engineering research.

3.2. Research Paths

Brinberg and McGrath argued that “The research process is the identification, selection, com-
bination, and use of elements and relations from the conceptual, methodological, and substantive
domains” [22, p. 16]. Thus, a research study consists of some phenomenon or topic of study,
a research method or technique, and a set of concepts or theory. These three elements can be
combined in different ways, depending on a study’s goal.

Scientific research studies may have different goals; some studies attempt to generate new
theory (e.g., using a Grounded Theory approach), whereas others attempt to evaluate a set of
hypotheses based on an existing theory (e.g., using a controlled experiment). Others still seek
to demonstrate the value of a certain method or technique within a certain domain (e.g., Tofan
et al. [81] proposed using the Repertory Grid Technique to capture tacit knowledge of software
architecture). As a result, a researcher designing a study will typically have a particular and
primary interest in one of the three domains discussed above. The domain of the researcher’s
primary interest defines the type of research.

In other words, the order in which the elements are chosen defines which research path a
researcher takes. Brinberg and McGrath identified three main research paths, which they labeled
the experimental, the theoretical, and the empirical path, which reflect different goals of a study.
As mentioned, we renamed these three paths as study design path, hypothetical path and the
observational path, respectively, to eliminate possible ambiguity in the SE research context. Each
research path has two variants, depending on which domain is of a researcher’s primary interest.
Figure 3, adapted from Brinberg and McGrath [22], shows the three research paths and their
variants. For example, a study following the observational path can be either method-driven or
system-driven, depending on whether a researcher’s primary interest lies in the methodological
domain or substantive domain, respectively.

The use of the different paths and research orientations is discussed and exemplified further
below. When analyzing a research study, one is “necessarily making presumptions about what

13

was in the minds of the researchers” [22, p. 61]. That is, one can never know the actual steps the
a researcher took to undertake a certain study.6

3.2.1. Study Design Path
The goal of the study design path is to build a study design, and use it on one or more elements

of the substantive domain. The study design is comprised of a set of concepts or a theory on
the one hand, and a research method or technique on the other hand. If the primary interest is
based in the conceptual domain, then the study is concept-driven, while if the primary interest
is based in the methodological domain, then the study is method-driven. The last element to
add to complete the study is a real-world system or phenomenon (i.e., the substantive domain).
A common scenario in SE research is that a researcher has a conceptual model or framework,
and develops a technique (or tool) to implement or support this. In this scenario, the substantive
domain has least “importance”; the implementation is the result, which serves as a validation of
the researcher’s proposed idea. One example of a study that followed the (concept-driven) study
design path is by Medvidović and Taylor [82]. They developed a classification and comparison
framework for architecture description languages (ADL). The framework represents a conceptual
lens, as it represents a set of properties of ADLs that Medvidović and Taylor deemed important.
Medvidović and Taylor speak of a taxonomy, which which could be considered a theory with an
“analysis” purpose only (see Section 2.2), or a typology [38]. Once defined, the next step was to
select a technique to compare—what in this case could be called a comparative analysis. The
combination of the comparison framework and the comparative analysis is a study design, which
could then be applied to instances from the substantive domain—a set of ADLs. The choice of
ADLs was presumably of least interest—numerous ADLs have been defined, and Medvidović
and Taylor selected ten ADLs for their comparison. The research path followed for this study is
illustrated in Figure 4.

3.2.2. Observational Path
The goal of the observational path is to collect a set of observations, and to explain them

in terms of a set of meaningful concepts. In other words, a researcher starts with a topic of
interest (substantive domain) and a research method (or technique). The result will be a set of
observations. The next step is to interpret these observations. One goal may be to generate a set
of concepts (or theory), using for instance a Grounded Theory approach [83]. Alternatively, the
set of observations (resulting from a case study, for instance) may be interpreted using an existing
set of concepts or theory that was developed prior to the study. However, the researcher’s primary
interest is in either the substantive domain (a phenomenon such as open source software) or a
method or technique.

One study that followed this path is that by Mockus et al. [84] which had a primary interest
in the substantive domain (see Figure 5). Their system-driven study focused on the open source
development phenomenon which had emerged as a popular research topic in the late nineties, and
in particular the Apache web server project was selected as a representative of the open source
phenomenon. The second step in their research was to select appropriate methods to study this
project. Based on their findings, Mockus et al. posed a number of hypotheses, representing

6Clearly, the RPS should not be considered as merely a mechanism to categorise a study correctly—instead, it should
be considered as a way to reflect on the role of theory in software engineering research. It can also be helpful to students
of software engineering in designing their research.

14

!"#$%&$

'()%#*"+"+$

,-.++/01.2%3$4$$

,%5).6/+%3$$

76.5"8%69$

:;$$

<61*/#"1#=6"$$

>"+16/)2%3$

?.3@=.@"+$

,%5).6.2A"$

<3.-(+/+$

!"#$%&$

BC+"6A.2%3+$

!#=D($>"+/@3$,%31")#ED6/A"3$$

+#=D($D"+/@3$

F6/5.6($

>%5./3$
!"1%3D.6($

>%5./3$
G"62.6($

>%5./3$

Figure 4: Research Path followed by Medvidović and Taylor [82].

!"#$%&$

'()%#*"+"+$

,%-.")#/01$

2%304-$

!/5+#0-67"$

2%304-$

8"#*%2%1%94.01$

2%304-$

!"#$%&$

:5+";706%-+$

!#/2($<"+49-$

!(+#"3=2;47"-$

()%#"6.01$+#/2($

!"#$%&'()*+,

-*%&,

>;430;($

<%304-$
!".%-20;($

<%304-$
?";60;($

<%304-$

Figure 5: Research path followed by Mockus et al. [84].

the conceptual domain of the study. While their proposed hypotheses represent a significant
contribution to the research on open source, their research design seems to have started from the
substantive domain.

3.2.3. Hypothetical Path
The hypothetical path refers to research that seeks to test theory rather than build it. In

particular, hypotheses can originate in the substantive domain (system-driven research) or from a
theory or model (concept-driven research). In the case of evaluating a set of hypotheses to test a
certain theory, a researcher’s primary interest is, of course, the theory being tested (the conceptual
domain). The researcher will then select an appropriate real-world situation, phenomenon, or
system (from the substantive domain) to gather data. Finally, an appropriate research method or

15

!"#$%&$

'()%#*"+"+$

'()%#*"+"+$%,$$

-)",$!%./0"$

1"2"3%)4",#$

5%67338$

9":$:/%9+"/$

;8+"$!#.1($

58737,<$37+#=$

>.<$18#8:8+"$

!"#$%&$

-:+"/28?%,+$

!#.1($@"+7<,$

;%,0")#A1/72",$

()%#"?083$+#.1($

!"#$%&'()*+,

-*%&,

B/748/($

@%487,$
!"0%,18/($

@%487,$
C"/?8/($

@%487,$

Figure 6: Research path followed by the follow-up study by Mockus et al. [85].

technique is selected; while the choice of a suitable method (methodological domain) is important
to achieve valid results, the choice of method will be guided (restricted) by the research situation,
and is therefore of “least” interest. In other words, a researcher typically will not start with a
research method in mind—say, controlled experiment—when evaluating a set of hypotheses.
Rather, the main interest is in investigating the hypotheses. For example, Mockus et al. followed
up their study of the Apache web server with a study of the Mozilla web browser [85]. In this
follow up study (see Figure 6), they shifted their primary interest from the substantive domain
(i.e., Apache) to the conceptual domain. The set of hypotheses they posed based on their findings
of their initial study was now the primary focus. To see whether their hypotheses would hold (i.e.,
suggesting a concept-driven hypothetical path), they selected a second open source project to
study (the Mozilla web browser). Finally, they selected appropriate methods to collect the data to
test their hypotheses.

4. Alternative Research Perspectives: Three Examples

To demonstrate the use and benefits using different research orientations, we follow an
approach by Brinberg and Hirschman [86] by presenting exemplar studies for each domain—a
conceptual schema, a methodology or technique, and a system or phenomenon. We selected
topics that are relevant in the software engineering context: Lehman’s Laws (conceptual domain),
object-oriented metrics (methodological domain), and software architecture (substantive domain).
For each topic, we present studies that represent three different perspectives.

4.1. Lehman’s Laws
Lehman’s laws of software evolution [87] are among the best known ‘theories’ of software

engineering.7 These laws have evolved themselves over the years [88]—an extensive presentation

7Lehman and colleagues have argued that the term ‘law’ should be interpreted in the domain of the social sciences,
rather than to use them to expect ‘precise invariant relationships of measurable observations’ [88].

16

of their history has been presented by Herraiz et al. [89]. Since their first publication, there have
been many studies investigating these laws.

Lehman’s Laws originated from a study of the OS/360 operating system by Belady and
Lehman [90], which is a clear exemplar of a system-driven observational study, whose basis lies
in the substantive domain—specifically, the study’s focus was the evolution of the OS/360 system.
The authors stated:

Starting with the initial release of OS/360 as a base, we have studied the interaction between management
and the evolution of OS/360 by using certain independent variables of the improvement and enhancement
(i.e., maintenance) process.

With the OS/360 operating system (an element of the substantive domain) as the primary
focus, the second step was to identify appropriate techniques to study this. In this case, Belady
and Lehman followed what they have termed “structured analysis” [90, p. 226]. The use of the
statistical methods on the collected data from the OS/360 system (i.e., the combination of the
OS/360 system as the topic of interest and the structured analysis as a method to study it) resulted
in a set of empirical observations. Belady and Lehman then discussed how they tried to identify
some underlying principles [90, p. 227]:

Thus these first observations encouraged the search for models that represented laws that governed the
dynamic behavior of the metasystem of organization, people, and program material involved in the creation
and maintenance process, in the evolution of programming systems.

A different perspective is taken by Gonzalez-Barahona et al. [91]. They examined the long-
term evolution of an open source project; their study has its basis in the methodological domain.
This focus is clearly evident in the authors’ remarks in the introduction of their article:

Instead of coming from the laws and then trying to decide which parameters to use for the analysis, we
have started with the parameters that can be extracted from the SCM [source code management] repository
and have found how to use them to apply the laws.

Gonzalez-Barahona et al. did not focus on the laws themselves as the primary focus, but
on the parameters to study them with. Therefore, they applied the method-driven study design
path—their study design consisted of (1) their focus on the methodological domain (parameters
to study Lehman’s laws), and (2) Lehman’s laws. While their choice of which open source
project to study (representing the substantive domain) was well-deliberated (they did not just
study any project), their decision to study the glibc project could be considered somewhat
opportunistic—as becomes clear from their observations in the concluding section:

We have been able to do it thanks to the availability of data for all this period in the current glibc git
repository and to its public availability. When looking for long-lived FLOSS projects, we found that it is
not common to have all their history available in their SCM repository or that it had problems (such as
periods without information) that rendered them unusable for a study such as this one.

In other words, the choice to study glibc was based on the fact that it was an appropriate
example given the availability of its development history. However, any other project with an
extensive and available development history would have sufficed.

A third perspective was taken by Lawrence [92], who conducted a research study on Lehman’s
Laws that has its basis in the conceptual domain. Lawrence observed:

A significant shortcoming in this field is the scarcity of published statistical evidence in support of the
laws. Indeed many of the works referenced contain little or no statistical validation of the models or results
presented.

17

Table 2: Theory fragments in studies on software evolution.

Study Research Path Theory (fragment) Purpose

Belady &
Lehman [90]

System-driven ob-
servational

Underlying principles of soft-
ware evolution

Principles of software evolution identi-
fied to characterize this phenomenon.

Gonzalez-
Barahona et
al. [91]

Method-driven
study design

Lehman’s laws Metrics were identified to test Lehman’s
laws and validated; Lehman’s laws pro-
vided the ‘background’.

Lawrence [92] Concept-driven
hypothetical

Lehman’s laws Lehman’s laws were the foundation for
this validating study.

In this study, Lawrence’s primary interest is to validate Lehman’s Laws, and thus this is a
concept-driven study. Concept-driven research can take one of two paths: a study design path, or
a hypothetical path. In this case, Lawrence’s research design was constrained by the available
data:

each law is considered in turn and statistical hypotheses based on it are analysed using the available data.

Lawrence had access to seven software systems (the substantive domain in this study), and
thus this was a key constraint on what metrics (representing the methodological domain in this
study) he could use. Therefore, this study followed the concept-driven hypothetical research path.

All three studies involve Lehman’s Laws, but each study presents a different perspective.
Table 2 presents an overview of these studies. The first study by Belady and Lehman had as its
key contribution the laws themselves. The second study by Gonzalez-Barahona et al. added a
different kind of knowledge, namely by improving our understanding on what parameters to use
to test Lehman’s Laws. The third study by Lawrence further expands the body of knowledge
by conducting a validation study of the laws. Together, these three studies each offer different
insights on Lehman’s Laws, from their initial definition to ways to measure and test them, and
to validate them on other software systems. The weaknesses that are inherent in one research
orientation (e.g., the lack of generalizability as a result of the single case study on which the laws
are based) can be compensated for by other orientations (e.g., a validation of the laws in other
settings so as to gauge the generalizability of the laws). Thus, we argue that triangulating different
research paths is an important strategy in establishing deep understanding of a particular topic.

4.2. Object-Oriented Metrics

There are numerous research methods and data collection techniques and metrics within
software engineering research (see Table 1). One example of this are object-oriented (OO) metrics.
There are a few well-known OO metric suites, such as the OO metrics proposed by Chidamber and
Kemerer [93] and the MOOD8 metric suite. Research on OO metrics has been extensive—hence,
this is an useful example to illustrate how using different research orientations can contribute to a
body of knowledge within software engineering.

One exemplar of research that has its basis in the conceptual domain is the original study by
Chidamber and Kemerer [93] who observed that existing software metrics have been criticized

8Metrics for Object-Oriented Design.

18

for several reasons. For instance, they are “lacking a theoretical basis” and “lacking in desirable
measurement properties” [93, p. 476]. To address this, Chidamber and Kemerer started with a
theoretical base, namely the ontology of Bunge [94, 95].

Of course, the key contribution of this paper by Chidamber and Kemerer is the now well-
known set of six OO metrics, better known as the CK metrics. One might suspect that this study is
therefore grounded in the methodological domain. However, as Chidamber and Kemerer outlined,
their concern was based on the fact that existing metrics did not sufficiently consider the properties
and concepts of the OO paradigm:

Therefore, given that current software metrics are subject to some general criticism and are easily seen as
not supporting key OO concepts, it seems appropriate to develop a set, or suite of new metrics especially
designed to measure unique aspects of the OO approach.

Based on their investigation of relations of the concepts found in OO designs, they defined a
number of metrics, thus the methodological domain was of secondary concern. Of least concern
was the actual application of the CK metrics on some real systems. The properties and concepts
of the OO approach and the subsequent development of a set of metrics to measure those concepts
together formed an instrumental structure called a study design. The next step was then to apply
this study design on elements of the substantive domain, as summarized in the paper’s conclusion:

In addition to the proposal and analytic test of theoretically-grounded metrics, this paper has also presented
empirical data on these metrics from actual commercial systems.

This suggests that the choice of ‘actual commercial systems’ is not of particular interest to the
researchers. Rather, of primary importance was the ability to correctly measure relationships and
properties of OO designs.

Cartwright and Shepperd [96] presented an empirical investigation of an object-oriented
software system and thus their primary interest lay in the substantive domain. They observed that

“the majority of object-oriented metrics research has concentrated upon defining sets of structural
metrics.” Instead, Cartwright and Shepperd’s focus was primarily a real-world object-oriented
software system itself—an instance of the substantive domain. The second step in their research
design is that of selecting an appropriate technique or method to collect data about the OO system
they are studying. The approach to collect data seems of secondary importance, as they stated (p.
788):

Initially, we had considered collecting the Chidamber and Kemerer (CK) metrics suite. Unfortunately, only
two out of the six metrics were readily available from the available design documentation. These were DIT
(depth of inheritance tree) and NOC (number of children). Consequently, we decided to supplement these
metrics with a number of additional measures that could be easily collected at the analysis/design stage.

Thus, the choice of OO metrics was adjusted based on the selection of the system that the
authors had set out to study. From this, it becomes clear that Cartwright and Shepperd followed
the system-driven observational path. The conceptual domain was presumably of least importance
in this study as the authors did not pay much attention to this.

A third orientation was taken by Harrison et al. [97], who presented a study with a clearly
defined research path outlined in the introduction of their article:

In this paper, we consider a set of metrics for object-oriented design called the MOOD metrics from a
measurement theory viewpoint, and then consider their empirical evaluation using three different projects.

19

Table 3: Theory fragments in studies on object-oriented metrics.

Study Research Path Theory (fragment) Purpose

Chidamber & Ke-
merer [93]

Concept-driven
study design

Bunge’s ontology Theoretical basis for defining metrics.

Cartwright &
Shepperd [96]

System-driven ob-
servational

Speculation regarding the lim-
ited use of class inheritance
and polymorphism.

Suggestions for developers, managers
and future research.

Harrison et al.
[97]

Method-driven
study design

Measurement theory Provide theoretical basis to validate
MOOD metrics.

Their study had as a primary focus the MOOD metrics, clearly an element of the methodologi-
cal domain. The goal of their study was to show that the MOOD metrics are valid, “in the sense
that they accurately measure the attributes of software which they were designed to measure” [97,
p. 491]. Of secondary importance was the theoretical lens with which these are considered—in
this case, the authors explicitly stated that they took a measurement theory viewpoint. The result
of the select of the MOOD metrics and the theoretical viewpoint resulted in a study design, which
Harrison and colleagues subsequently applied on a selected number of projects for their empirical
validation.

These three studies illustrate the different perspectives that can be taken when studying
elements of the methodological domain (see Table 3), in this case object-oriented metrics. The
purpose of a study will affect the primary focus of a researcher. Whereas Chidamber and Kemerer
focused on defining a theoretically sound set of metrics to correctly measure OO designs, thus
focusing on the conceptual domain, Cartwright and Shepperd on the other hand paid very little
attention to the conceptual domain and instead focus primarily on the substantive domain by
studying a large-scale object-oriented software system. The purpose of the study by Harrison et al.
focused on the validation of a set of metrics using measurement theory as a conceptual lens.

4.3. Software Architecture
Software architecture has been established as an important sub-field within the software

engineering discipline. This topic emerged in the mid-nineties with the realization that a soft-
ware system’s architecture has a significant impact on its so-called quality attributes such as
performance, reliability and safety [98]. This element from the substantive domain in software
engineering is thus an interesting topic, as numerous studies have focused on this topic from
different research orientations.

The first example is a study by Bowman et al. [99] that represents system-driven research.
Bowman et al. presented an analysis of the software architecture of the Linux kernel. Their
primary focus was on the substantive domain—software architecture—which they introduced in
the beginning of the paper:

Recent research suggests that large software systems should be designed with a documented software
architecture. This architecture provides a building plan for a system at a high level of abstraction. Individual
functions and even modules are not described in detail; instead, subsystems and relations between them
are documented. This level of abstraction is appropriate for understanding an entire software system, and
provides a good mechanism for system understanding.

The authors continued with observations that software architecture is important, and expressed
a specific interest in Linux:

20

Because Linux is an interesting representative of existing software systems, we chose to examine it as a
case study.

The authors’ second step of the research, which we would classify as having followed the
observational path, is the selection of an appropriate methodology to study this topic. Within
the overall case study research strategy (also an element of the methodological domain), the
authors defined a process to extract the ‘concrete’ (implemented, as opposed to the designed)
architecture. Using source code analysis and visualization tools the authors built a representation
of the implementation. Thus, the combination of the system (Linux kernel) and techniques to
study it (tools), resulted in a set of empirical observations.

Whereas the study by Bowman et al. is a system-driven observational study, the study by
Petriu et al. [100] is what we would call a method-driven design study. Petriu et al. presented a
study that has its basis in the methodological domain, as suggested in the abstract:

This paper proposes a systematic approach to building Layered Queueing Network (LQN) performance
models from a UML description of the high-level architecture of a system and more exactly from the
architectural patterns used for the system.

Their primary interest is a technique to build layered queueing network (LQN) performance
models. These LQN models are based on a conceptual description of a system’s architecture in
UML notation, specifically using architectural patterns. Architectural patterns (e.g., client/server,
layers, pipes/filter) are recurring solutions to common design problems, and thus could be
considered conceptualized design building blocks. The technique that can be used to model
certain properties (i.e., performance – a quality attribute) of a system architecture based on its
patterns is thus a study design. The substantive domain was presumably of least interest in this
study; the study design is applied to a telecommunication system, but the technique could have
been applied to any system of significant size.

A third perspective on software architecture as a topic of study is given by LaMantia et al.
[101]. Their research is based in the conceptual domain, and focuses on modularity, a desired
property of software architectures as it supports parallel development and maintainability [102].
LaMantia et al. highlighted the current informal nature of principles of achieving modularity, and
that:

we are in need of a formal theory and models of modularity and software evolution that can capture the
essence of these important but informal design principles and provide the power of description, prediction
and prescription.

Thus motivated, the authors clearly described what we term a concept-driven hypothetical
path:

To further explore the theory’s descriptive power for large and complex software systems, we examine the
evolution of two software product platforms through the lens of DSM models and design rule theory.

The primary interest in this study was the ‘lens of DSM models and design rule theory.’ The
authors then identified two software products to study. The third step of their study design, namely
the methodology, received substantially less emphasis.

The variety of research perspectives as represented by a focus on a specific element of a
study is an important form of triangulation, what we term “triangulation of research orientations.”
This form of triangulation complements other forms such as triangulation among data sources,
researchers, and research methods [103]. Insights gained from different studies that have different

21

Table 4: Theory fragments in studies on software architecture.

Study Research Path Theory (fragment) Purpose

Bowman et al.
[99]

System-driven ob-
servational

‘lessons learned,’ suggestions
and speculation about design
decisions.

Draw lessons from observations.

Petriu et al. [100] Method-driven
study design

Conceptual description of
software architecture (UML)

Foundation for LQN performance mod-
els.

LaMantia et al.
[101]

Concept-driven
hypothetical

DSM models, design rule the-
ory

Exploration of theory’s descriptive
power.

orientations can be combined and offer rich insights into a study topic — Table 4 lists the three
studies that have focused on software architecture. While the study by Bowman et al. offered
unique insights into the architecture of one specific system of considerable relevance (given the
importance of Linux in the software industry), the topic of software architecture has also greatly
benefited from insights into modeling quality attributes such as performance (as was done in the
study by Petriu et al.). A third perspective was offered by LaMantia et al. who focused on a
formal theory and models of software evolution, in which case the methodology used was not as
important.

5. Discussion and Conclusion

In this paper we have presented an extensive discussion of what theory is, what it looks like,
and its purpose. The Research Path Schema, based on the Validity Network Schema by Brinberg
and McGrath [22], is a useful analytical tool to view SE research and to better understand the
role of theory (fragments). Based on our discussion and demonstration of the RPS, we suggest a
number of potential implications for future SE research and education.

5.1. Stronger Focus on Theorizing

While we strongly believe in the importance of theory as both a driver for, and a result of
empirical research, we also admit that not each and every study can or should present new theory.
However, one of our arguments is that theory is not a luxury, to be left to ‘philosophers,’ but that
it is an essential element of SE research and thus should be considered when presenting research
results in papers. Theory should inform the design of new studies, which will help to converge
the research literature on a particular topic (or research question). This in turn will help in linking
different studies on a topic, and to focus more directly on essential questions that SE research
purports to address, namely those relating to building affordable, timely and high-quality software
systems. We argue that with an increased awareness of the role of theory and the theorizing
process, researchers may be able to design better research studies that are grounded in theory
or extend existing theory fragments. This will contribute to one of the purported benefits of
theory-focused research, namely that of knowledge transfer. The RPS offers a lens to view SE
research studies, which can help in locating the theory in previous studies, and to design new
studies.

22

5.2. Theorizing and Conceptualization Vary in Shape

The RPS presumes that a research study always consists of elements of three domains: the
substantive, the methodological, and the conceptual domain. It is important to emphasize that
research papers may make other contributions than empirical findings. In particular, conceptual
papers are important to bring the field as a whole forward, as such papers may introduce new and
important perspectives on topics [59]—the paper by Jansen and Bosch [73] mentioned above is
a good example of this. Conceptual contributions in empirical papers may take on a variety of
forms. Important also are meta-level studies that provide guidelines to other researchers, which
may pertain to the research process or the reporting of research. While such papers may represent
useful contributions, the majority of studies that will bring the software engineering discipline
forward will be empirical studies that contain elements from all three domains: methodological,
conceptual and substantive.

5.3. Toward Theory-Oriented Software Engineering Research

The SE research field has a strong emphasis on Evidence-Based Software Engineering (EBSE)
research, as advocated by Kitchenham et al. [2]. While we fully support this advocacy, we
propose Theory-Oriented Software Engineering (TOSE) research, which complements EBSE
with an explicit attention for the role of theory in research, so as to complete the cycle shown in
Figure 2. This may either follow a research-then-theory or a theory-then-research approach [38]
as described above. The studies by Mockus et al. are good examples of this; their first study of
the Apache web server resulted in a number of observations, based on which they hypothesized
(theorized) about OSS project governance and development. This theory fragment was then used
to inform their second study (of Mozilla).

5.4. Theorizing in Software Engineering Education

Since current research in SE pays little attention to theories and theory building, PhD students
get little—if any—exposure to, or training in building their own theories, or in using existing
theories to guide and conduct their research. As argued above, for the SE research community to
adopt a theory-focused approach to conducting research, new researchers (i.e., Ph.D. students)
need to receive appropriate training. Researchers in other fields, in particular the social sciences,
provided guidance in theory building, such as Kaplan [47], Reynolds [38] and Dubin [30]. While
some guidance has been provided, such as by Sjøberg et al. [20], no in-depth discussions of how
to theorize in SE research are available. Leshem and Trafford [104] presented an analysis of how
conceptual frameworks can be used in doctoral research, which could be a sound starting point.

An important challenge here is that there is no agreement on what theories should look
like in software engineering. While there are clear examples such as the theory of software
evolution pioneered by Belady and Lehman, other topics may be harder to capture in theoretical
propositions.

5.5. Awareness of Theory in Software Engineering Research

While theories have received limited attention, the SE research community is well familiar
with the use of frameworks. One of the purposes of developing or using a framework is to organize
existing concepts from the literature, or to assist in the development and testing of a theory [105].
As such, frameworks can be seen as theory fragments with an analysis goal. One of the examples
presented in this paper, the study by Medvidović and Taylor, is a good example of this. Their
framework provides a typology of ADLs, based on which researchers can design new studies. We

23

believe that by using the RPS as a lens to analyze existing studies, researchers can increase their
awareness of the role of theory or theoretical and conceptual elements of a study. Furthermore,
while using the RPS as a lens, the lack of such theoretical elements can also become more clear.

5.6. Conclusion

In this paper we have discussed the need for and the role of theory in software engineering
research. In order to better understand the role of theory, we adapted the Validity Network Schema
(VNS), originally proposed by Brinberg and McGrath. Our adaptation, which we refer to as the
Research Path Schema (RPS), is a model of software engineering research studies. To demonstrate
how this model can be used as a ‘guide’ for designing research studies, we dissected a number
of influential software engineering research papers. While we believe the RPS is an effective
framework to reason about the design of a study, we would also wish to remind the reader of
George Box’s words, namely that “All models are wrong, but some are useful” [106]. Clearly,
there will be research studies that do not perfectly match the structure that the RPS defines (i.e.,
conceptual, substantive, methodological domains). Nevertheless, we believe that the RPS as a
model is “useful,” and demonstrated this with a number of examples in Section 4.

Besides the RPS as a tool to dissect and design new research studies, we believe that a Theory-
Oriented Software Engineering (TOSE) research philosophy could complement the Evidence-
Based Software Engineering (EBSE) approach that has become popular in SE research. We
believe a stronger focus on the development of theory in software engineering research can
significantly help in increasing both rigor and relevance—rigor may increase as research studies
will be organized around explicated theories (or theory fragments) and thus will take into account
confirming or disconfirming perspectives. Relevance may increase as research studies will
converge around theories that aim to explain and understand real-world phenomena in software
engineering practice.

Acknowledgments

We thank the anonymous reviewers for their constructive and thoughtful feedback which
has helped to improve this paper, in particular the distinction between variance and process
theories, as well as Section 4 that presents more extensive illustrations of the RPS in software
engineering research studies. This work was supported, in part, by Science Foundation Ireland
grant 10/CE/I1855 to Lero—the Irish Software Engineering Research Centre (www.lero.ie).

References

[1] K. Stol, B. Fitzgerald, Uncovering theories in software engineering, in: Proceedings of the 2nd SEMAT Workshop
on a General Theory of Software Engineering (GTSE), IEEE Computer Society, 2013, pp. 5–14.

[2] B. Kitchenham, T. Dybå, M. Jørgensen, Evidence-based software engineering, in: Proceedings of the International
Conference on Software Engineering, IEEE Computer Society, 2004, pp. 273–281.

[3] L. Briand, Embracing the engineering side of software engineering, IEEE Software 29 (4) (2012) 93–96.
[4] P. J. Denning, Is computer science science?, Communications of the ACM 48 (4) (2005) 27–31.
[5] P. J. Denning, Computing is a natural science, Communications of the ACM 50 (7) (2007) 13–18.
[6] P. J. Denning, the science in computer science, Communications of the ACM 56 (5) (2013) 35–38.
[7] J. Offutt, Putting the engineering into software engineering education, IEEE Software 30 (1) (2013) 94–96.
[8] P. Naur, B. Randell (Eds.), Report on a conference sponsored by the NATO SCIENCE COMMITTEE, 1968.
[9] S. Beecham, P. O’Leary, I. Richardson, S. Baker, J. Noll, Who are we doing global software engineering research

for?, in: IEEE 8th International Conference on Global Software Engineering, 2013, pp. 41–50.

24

[10] K. Stol, P. Avgeriou, M. A. Babar, Design and evaluation of a process for identifying architecture patterns in
open source software, in: Proceedings of the European Conference on Software Architecture, Springer, 2011, pp.
147–163.

[11] P. Johnson, P. Ralph, M. Goedicke, P.-W. Ng, K. Stol, K. Smolander, I. Exman, D. E. Perry, Report on the second
SEMAT workshop on general theory of software engineering (GTSE 2013), ACM Software Engineering Notes
38 (5) (2013) 47–50.

[12] L. J. Bourgeois, III, Toward a method of middle-range theorizing, Academy of Management Review 4 (3) (1979)
443–447.

[13] R. Merton, Social Theory and Social Structure, Enlarged Edition, Free Press, 1968.
[14] K. Lewin, The research centre for group dynamics at Massachusetts Institute of Technology, Sociometry 8 (1945)

126–135.
[15] S. Lynham, The general method of theory-building research in applied disciplines, Advances in Developing Human

Resources 4 (3) (2002) 221–241.
[16] S. Gregor, The nature of theory in information systems, MIS Quarterly 30 (3) (2006) 611–642.
[17] J. E. Hannay, D. I. K. Sjøberg, T. Dybå, A systematic review of theory use in software engineering experiments,

IEEE Transactions on Software Engineering 33 (2) (2007) 87–107.
[18] P. Johnson, M. Ekstedt, I. Jacobson, Where’s the theory for software engineering?, IEEE Software 29 (55) (2012)

94–96.
[19] D. I. K. Sjøberg, Documenting theories: Working group results, in: V. Basili, D. Rombach, K. Schneider,

B. Kitchenham, D. Pfahl, R. Selby (Eds.), Experimental Software Engineering Issues: Assessment and Future,
Springer-Verlag, 2007, pp. 111–114, LNCS 4336.

[20] D. I. K. Sjøberg, T. Dybå, B. C. D. Anda, J. E. Hannay, Building theories in software engineering, in: Guide to
Advanced Empirical Software Engineering, Springer, 2008, pp. 312–336.

[21] K. B. Zerangue, On developing a general theory of software engineering, in: Proceedings of the 17th Annual
International Computer Software and Applications Conference (COMPSAC ’93), IEEE, 1993.

[22] D. Brinberg, J. McGrath, Validity and the Research Process, SAGE Publications, 1985.
[23] K. Weick, What theory is not, theorizing is, Administrative Science Quarterly 40 (3) (1995) 385–390.
[24] R. Sutton, B. Staw, What theory is not, Administrative Science Quarterly 40.
[25] S. Pfleeger, B. Kitchenham, Principles of survey research: Part 1: Turning lemons into lemonade, ACM SIGSOFT

Software Engineering Notes 26 (6) (2001) 16–18.
[26] P. Runeson, M. Höst, A. Rainer, C. Wohlin, Case Study Research in Software Engineering, Wiley, 2012.
[27] G. Coleman, R. O’Connor, Using grounded theory to understand software process improvement: A study of Irish

software product companies, Information and Software Technology 49 (6) (2007) 654–667.
[28] H. Sharp, H. Robinson, An ethnographic study of XP practice, Empirical Software Engineering 9 (4) (2004)

353–375.
[29] H. Edwards, S. McDonald, S. Young, The repertory grid technique: Its place in empirical software engineering

research, Information and Software Technology 51 (2009) 785–798.
[30] R. Dubin, Theory Building, Revised Edition, The Free Press, 1978.
[31] R. Suddaby, From the editors: What grounded theory is not, Academy of Management Review 49 (4) (2006)

633–642.
[32] R. Nisbett, The Geography of Thought: How Asians and Westerners Think Differently and Why, Nicholas Brealey

Publishing, 2005.
[33] T. Hall, N. Baddoo, S. Beecham, H. Robinson, H. Sharp, A systematic review of theory use in studies investigating

the motivations of software engineers, ACM Transactions on Software Engineering and Methodology 18 (3) (2009)
Art. 10.

[34] C. Robson, Real World Research: A Resource for Social Scientists and Practitioner-Researchers, 2nd Edition,
Blackwell Publishers, 2002.

[35] D. Cruzes, T. Dybå, Research synthesis in software engineering: A tertiary study, Information and Software
Technology 53 (5) (2011) 440–455.

[36] M. Sandelowski, Whatever happened to qualitative description?, Research in Nursing & Health 23 (4) (2000)
334–340.

[37] P. Checkland, Notes on teaching and researching IS, Systemist (IS Special Edition Part II) 16 (1) (1994) 6–8.
[38] P. D. Reynolds, A Primer in Theory Construction, Macmillan Publishing Company, 1971.
[39] V. Basili, M. Zelkowitz, Empirical studies to build a science of computer science, Commun. ACM 50 (11) (2007)

33–37.
[40] M. Broy, Can practitioners neglect theory and theoreticians neglect practice?, IEEE Comput. 44 (10) (2011) 19–24.
[41] M. Lehman, J. Ramil, An approach to a theory of software evolution, in: Proceedings of the International Workshop

on Principles of Software Evolution, 2001, pp. 70–74.
[42] M. Bunge, Scientific Research I: The Search for System, Springer-Verlag New York Inc., 1967.

25

[43] M. Shaw, Prospects for an engineering discipline of software, IEEE Software 7 (6) (1990) 15–24.
[44] J. Carroll, P. Swatman, Structured-case: a methodological framework for building theory in information systems

research, European Journal of Information Systems 9 (4) (2000) 235–242.
[45] A. Endres, D. Rombach, A Handbook of Software and Systems Engineering: Empirical Observations, Laws and

Theories, Pearson Education Ltd., 2003.
[46] R. Wieringa, M. Daneva, N. Condori-Fernandez, The structure of design theories, and an analysis of their use

in software engineering experiments, in: Proceedings of the International Symposium on Empirical Software
Engineering and Measurement, 2011, pp. 295–304.

[47] A. Kaplan, The Conduct of Inquiry: Methodology for Behavioral Science, Crowell, 1964.
[48] N. Chalofsky, Professionalization comes from theory and research: The “why” instead of the “how to”, in: New

Directions for Adult and Continuing Education, 1996, pp. 51–56.
[49] R. L. Glass, The relationship between theory and practice in software engineering, Communications of the ACM

39 (11) (1996) 11–13.
[50] D. Whetten, What constitutes a theoretical contribution?, Academy of Management Review 14 (4) (1989) 490–495.
[51] H. M. Blalock, Jr., Theory Construction: From Verbal to Mathematical Formulations, Prentice-Hall, Inc., 1969.
[52] R. Weber, Theoretically speaking, MIS Quarterly 27 (3) (2003) iii–xii.
[53] K. Weick, Theory construction as disciplined imagination, Academy of Management Review 14 (4) (1989)

516–531.
[54] P. B. Medawar, Is the scientific paper a fraud?, Saturday Review (1964) 42–43.
[55] A. Van de Ven, Engaged scholarship: a guide for organizational and social research, Oxford University Press, 2007.
[56] P. Ralph, Y. Wand, A teleological process theory of software development, in: Proceedings of JAIS Theory

Development Workshop, 2008.
[57] P. Ralph, Comparing two software design process theories, in: Global Perspectives on Design Science Research,

Springer, 2010, pp. 139–153.
[58] H. Reichenbach, Experience and Prediction, University of Chicago Press, 1938.
[59] M. Yadav, The decline of conceptual articles and implications for knowledge development, Journal of Marketing

74 (2010) 1–19.
[60] K. Crowston, H. Annabi, J. Howison, C. Masango, Effective work practices for software engineering: Free/libre

open source software development, in: WISER, 2004, pp. 18–26.
[61] L. Morgan, J. Feller, P. Finnegan, Exploring value networks: theorising the creation and capture of value with open

source software, European Journal of Information Systems 22 (2013) 569–588.
[62] S. Bacharach, Organizational theories: Some criteria for evaluation, Academy of Management Review 14 (4)

(1989) 496–515.
[63] G. Homans, Contemporary theory in sociology, in: Handbook of modern sociology, Rand McNally, 1964, pp.

951–977.
[64] E. Swanson, The dimensions of maintenance, in: 2nd International Conference on Software Engineering, 1976, pp.

492–497.
[65] J. R. Venable, The role of theory and theorising in design science research, in: Proceedings of the First International

Conference on Design Science Research in Information Systems and Technology, 2006, pp. 1–18.
[66] J. F. Nunamaker, M. Chen, T. D. M. Purdin, Systems development in information systems research, Journal of

Management Information Systems 7 (3) (1991) 631–640.
[67] S. March, G. F. Smith, Design and natural science research on information technology, Decision Support Systems

15 (4) (1995) 251–266.
[68] D. Jones, S. Gregor, The anatomy of a design theory, Journal of the Association for Information Systems 8 (5)

(2007) Art. 1.
[69] T. S. Kuhn, The Structure of Scientific Revolutions, 4th Edition, The University of Chicago Press, 2012.
[70] F. Shull, R. Feldmann, Building theories from multiple evidence sources, in: Guide to Advanced Empirical Software

Engineering, Springer, 2008, pp. 337–364.
[71] P. Runeson, Theory building attempts in software engineering, in: Proceedings of the SEMAT Workshop on a

General Theory of Software Engineering, 2012.
[72] K. Corley, D. Gioia, Building theory about theory building: What constitutes a theoretical contribution?, Academy

of Management Review 36 (1) (2011) 12–32.
[73] A. Jansen, J. Bosch, Software architecture as a set of architectural design decisions, in: Proceedings of the 5th

Working IEEE/IFIP Conference on Software Architecture, 2005, pp. 109–120.
[74] R. Capilla, F. Nava, S. Peréz, J. C. Duenas, A web-based tool for managing architectural design decisions, ACM

SIGSOFT Software Engineering Notes 31 (5) (2006) Art. 4.
[75] J. McGrath, D. Brinberg, External validity and the research process: A comment on the calder/lynch dialogue,

Journal of Consumer Research 10 (1) (1983) 115–124.
[76] B. Fitzgerald, D. Howcroft, Towards dissolution of the is research debate: from polarization to polarity, Journal of

26

Information Technology 13 (1998) 313–326.
[77] J. Feller, B. Fitzgerald, S. A. Hissam, K. R. Lakhani (Eds.), Perspectives on Free and Open Source Software, MIT

Press, 2005.
[78] S. Beecham, N. Baddoo, T. Hall, H. Robinson, H. Sharp, Motivation in software engineering: A systematic

literature review, Information and Software Technology 50 (2008) 860–878.
[79] K. Stol, M. A. Babar, B. Russo, B. Fitzgerald, The use of empirical methods in open source software research:

Facts, trends and future directions, in: Proceedings of the 2nd Workshop on Emerging Trends in FLOSS Research
and Development, collocated with ICSE, IEEE Computer Society, 2009, pp. 19–24.

[80] S. Pfleeger, Albert Einstein and Empirical Software Engineering, IEEE Computer 32 (10) (1999) 32–38.
[81] D. Tofan, M. Galster, P. Avgeriou, Capturing tacit architectural knowledge using the repertory grid technique, in:

International Conference on Software Engineering, 2011, pp. 916–919.
[82] N. Medvidović, R. N. Taylor, A classification and comparison framework for software architecture description

languages, IEEE Transactions on Software Engineering 26 (1) (2000) 70–93.
[83] B. Glaser, A. Strauss, The discovery of grounded theory: strategies for qualitative research, Aldine Transaction,

1967.
[84] A. Mockus, R. Fielding, J. Herbsleb, A case study of open source software development: The apache server, in:

Proceedings of the International Conference on Software Engineering, 2000, pp. 263–272.
[85] A. Mockus, R. Fielding, J. Herbsleb, Two case studies of open source software development: Apache and mozilla,

ACM Transactions on Software Engineering and Methodology 11 (3) (2002) 309–346.
[86] D. Brinberg, E. C. Hirschman, Multiple orientations for the conduct of marketing research: An analysis of the

academic/practitioner distinction, Journal of Marketing 50 (4) (1986) 161–173.
[87] M. M. Lehman, Programs, cities, students: Limits to growth?, in: M. M. Lehman, L. A. Belady (Eds.), Program

Evolution. Processes of Software Change, Academic Press, 1985, pp. 133–164.
[88] M. W. Godfrey, D. M. German, On the evolution of Lehmans laws, Journal of Software: Evolution and Process in

press.
[89] I. Herraiz, D. Rodriguez, G. Robles, J. Gonzalez-Barahona, The evolution of the laws of software evolution: A

discussion based on a systematic literature review, ACM Computing Surveys 46 (2) (2013) Art. 28.
[90] L. A. Belady, M. M. Lehman, A model of large program development, IBM Systems Journal 15 (3) (1976) 225–252.
[91] J. M. Gonzalez-Barahona, G. Robles, I. Herraiz, F. Ortega, Studying the laws of software evolution in a long-lived

floss project, Journal of Software: Evolution and Process in press.
[92] M. J. Lawrence, An examination of evolution dynamics, in: Proceedings of the 6th International Conference on

Software Engineering, 1982, pp. 188–196.
[93] S. R. Chidamber, C. F. Kemerer, A metrics suite for object oriented design, IEEE Transactions on Software

Engineering 20 (6) (1994) 476–493.
[94] M. Bunge, Treatise on Basic Philosophy: Ontology I: The Furniture of the World, Riedel, 1977.
[95] Y. Wand, V. C. Storey, R. Weber, An ontological analysis of the relationship construct in conceptual modeling,

ACM Transactions on Database Systems 24 (4) (1999) 494–528.
[96] M. Cartwright, M. Shepperd, An empirical investigation of an object-oriented software system, IEEE Transactions

on Software Engineering 26 (8) (2000) 786–796.
[97] R. Harrison, S. J. Counsell, R. V. Nithi, An evaluation of the MOOD set of object-oriented software metrics, IEEE

Transactions on Software Engineering 24 (6) (1998) 491–496.
[98] L. Bass, P. Clements, R. Kazman, Software Architecture in Practice, 3rd Edition, Addison-Wesley Professional,

2012.
[99] I. T. Bowman, R. C. Holt, N. V. Brewster, Linux as a case study: its extracted software architecture, in: International

Conference on Software Engineering, ACM, 1999, pp. 555–563.
[100] D. Petriu, C. Shousha, A. Jalnapurkar, Architecture-based performance analysis applied to a telecommunication

system, IEEE Transactions on Software Engineering 26 (11) (2000) 1049–1065.
[101] M. LaMantia, Y. Cai, A. MacCormack, Analyzing the evolution of large-scale software systems using design

structure matrices and design rule theory: Two exploratory cases, in: Proceedings of the 7th Working IEEE/IFIP
Conference on Software Architecture, 2008, pp. 83–92.

[102] K. Stol, P. Avgeriou, M. Babar, Y. Lucas, B. Fitzgerald, Key factors for adopting inner source, ACM Transactions
on Software Engineering and Methodology 23 (2) (2014) Art. 18.

[103] J. Creswell, D. Miller, Determining validity in qualitative inquiry, Theory into Practice 39 (3) (2000) 124–130.
[104] S. Leshem, V. Trafford, Overlooking the conceptual framework, Innovations in Education and Teaching International

44 (1) (2007) 93–105.
[105] A. Schwarz, M. Mehta, N. Johnson, W. Chin, Understanding frameworks and reviews: A commentary to assist us

in moving our field forward by analyzing our past, The DATA BASE for Advances in Information Systems 38 (3)
(2007) 29–50.

[106] G. Box, N. Draper, Empirical Model-Building and Response Surfaces, Wiley, 1987.

27

	Introduction
	Theory: Motivation, Definition, Purpose
	The Importance of Conceptualization
	What Theory Is and Is Not
	The Purpose of Science and the Goals of Theory
	Theory in Software Engineering

	The Research Path Schema
	Domains of the Research Path Schema
	Substantive domain
	Conceptual domain
	Methodological domain

	Research Paths
	Study Design Path
	Observational Path
	Hypothetical Path

	Alternative Research Perspectives: Three Examples
	Lehman's Laws
	Object-Oriented Metrics
	Software Architecture

	Discussion and Conclusion
	Stronger Focus on Theorizing
	Theorizing and Conceptualization Vary in Shape
	Toward Theory-Oriented Software Engineering Research
	Theorizing in Software Engineering Education
	Awareness of Theory in Software Engineering Research
	Conclusion

