
Please cite as: Agerfalk, P, Fitzgerald, B, and Stol, K (2015) Not so Shore Anymore: The New Im-
peratives when Sourcing in the Age of Open, Proceedings of the 23rd European Conference on Infor-
mation Systems (ECIS) Münster, Germany, May 2015.

Twenty-Third European Conference on Information Systems (ECIS), Münster, Germany, 2015 1

NOT SO SHORE ANYMORE:
THE NEW IMPERATIVES WHEN SOURCING

IN THE AGE OF OPEN

Complete Research

Ågerfalk, Pär J., University of Uppsala, Sweden, par.agerfalk@im.uu.se

Fitzgerald, Brian, Lero—the Irish Software Research Centre, University of Limerick, Ireland,
bf@lero.ie

Stol, Klaas-Jan, Lero—the Irish Software Research Centre, University of Limerick, Ireland,
klaas-jan.stol@lero.ie

Abstract
Software outsourcing has been the subject of much research in the past 25 years, largely because of
potential cost savings envisaged through lower labour costs, ‘follow-the-sun’ development, access to
skilled developers, and proximity to new markets. In recent years, the success of the open source phe-
nomenon has inspired a number of new forms of sourcing that combine the potential of global sourc-
ing with the elusive and much sought-after possibility of increased innovation. Three of these new
forms of sourcing are opensourcing, innersourcing and crowdsourcing. Based on a comparative anal-
ysis of a number of case studies of these forms of sourcing, we illustrate how they differ in both signif-
icant and subtle ways from outsourcing. We conclude that these emerging sourcing approaches call
for conceptual development and refocusing. Specifically, to understand software sourcing in the age of
open, the important concept is no longer ‘shoring,’ but rather the degree of ‘workforce unknownness’
and its implications for the development situation at hand.

Keywords: Outsourcing, open innovation, open source, opensourcing, inner source, innersourcing,
crowdsourcing

Ågerfalk et al. / Not So Shore When Sourcing in the Age of Open

Twenty-Third European Conference on Information Systems (ECIS), Münster, Germany, 2015 2

1 Introduction
Outsourcing of software development has been steadily on the increase according to both US and Eu-
ropean reports. However, in many cases, global sourcing of software development (often referred to as
distributed development, global software development or global software engineering (GSE)), has not
delivered on its promise (e.g., Nakatsu and Iacovou, 2009; Tiwana and Keil, 2009; Ó Conchúir et al.,
2009). In fact, a significant body of research has identified economical, technical, organizational, and
cultural challenges associated with global software sourcing (Damian and Moitra, 2006; Ågerfalk et
al., 2009; Šmite et al., 2010). At the same time, the success of the open source software movement,
which seems to overcome many of these challenges (Crowston et al., 2007; Stol et al., 2014), has been
an inspiration for a number of specific forms of software sourcing.

The conventional wisdom of software engineering suggests that given the inherent complexity of
software, it should be developed using tightly co-ordinated centralized teams, following a rigorous de-
velopment process. In recent times, the open source phenomenon has attracted considerable attention
as an agile, practice-led initiative that appears to address the three core aspects of the so-called ‘soft-
ware crisis,’ namely, high cost of development, extended development time-scale, and poor quality of
the final software product (Fitzgerald, 2004). In terms of development cost, open source products are
usually freely available for public download. From the point of view of development time-scale, the
collaborative, parallel efforts of globally-distributed co-developers has allowed many open source
products to be developed much more quickly than conventional software through the ‘follow-the-sun’
elongation of working hours. Finally, in terms of quality, many open source products are recognized
for their high standards of reliability, efficiency and robustness, and the open source phenomenon has
produced several market leaders in their respective areas — Linux and Apache spring to mind. Indeed,
these are known as ‘category killers,’ so called because their success removes any incentive to develop
competing products. The open source model also seems to harness the most scarce resource of all: tal-
ented software developers, many of whom exhibit a long-standing commitment to their chosen pro-
jects. It is further suggested that the resulting peer review model helps ensure the quality of the soft-
ware produced (Feller and Fitzgerald, 2002). Also, given that open source developers self-select to
work on topics that interest them and that suit their ability, they are likely to be able to produce work
of high quality.

Since the primary force driving offshore sourcing appears to be cost savings (Lacity et al., 2010) and
the open source model is associated with significant cost savings (Wheeler, 2004), it is natural that
companies would seek to exploit the open source development model. However, an additional highly-
praised advantage of the open source model is its potential for increased innovation through access to
a large skilled developer pool with both broad and deep expertise that offer the capacity to view prob-
lems in new ways (Carmel, 1999; 2006; Herbsleb and Grinter, 1999; Carmel and Agarwal, 2001; Ebert
and De Neve, 2001; Carmel and Tjia, 2005; Ó Conchúir et al., 2009; Morgan and Finnegan, 2010; Es-
eryel, 2014). Thus, given the success of the open source model and its potential for game-changing
cost savings and innovation, it is not surprising that open source would inspire new forms of sourcing.
In previous research, we have conducted detailed case studies of three alternative, nascent forms of
open source-inspired software sourcing, namely opensourcing (Ågerfalk and Fitzgerald, 2008), inner-
sourcing (Stol et al., 2014) and crowdsourcing (Stol and Fitzgerald, 2014). In this paper, by revisiting
and integrating the findings from these earlier studies, we characterize and compare these three forms
of open source-inspired sourcing and illustrate how they differ from conventional outsourcing. As far
as we are aware, this is the first study that systematically compares these emerging forms of software
sourcing and contrasts them with conventional outsourcing. Such an effort should be of interest to
managers facing software-sourcing decisions as well as to researchers interested in contemporary
software sourcing approaches. In what follows, we discuss three alternative forms of sourcing (Sec. 2),
followed by our research approach (Sec. 3). We then present a comparison of these sourcing strategies
using an inductively developed framework (Sec. 4). We conclude in Section 5.

Ågerfalk et al. / Not So Shore When Sourcing in the Age of Open

Twenty-Third European Conference on Information Systems (ECIS), Münster, Germany, 2015 3

2 Sourcing in the Age of Open

2.1 Opensourcing
Carmel and Tjia (2005) have characterized offshore sourcing as ‘outsourcing to a global workforce.’
Opensourcing, on the other hand, can best be characterized as outsourcing to a global but largely un-
known workforce of open source developers. The term ‘opensourcing’ has been suggested to refer to
the use of the open source development model as a software sourcing strategy (Ågerfalk and Fitzger-
ald, 2008). Open source software can be defined as software released under the terms of a license that
allows the licensee to use, modify and redistribute, either gratis or for a fee. Opensourcing thus allows
companies to ‘subcontract’ development activities to an open source community. Since anyone (in
principle) can join any open source project, knowing beforehand the location of a particular developer
is impossible.

A central aspect of opensourcing is the mutuality and reciprocity between customer and community
that are inscribed in the ‘copyleft’ terms found in many open source licenses (Ågerfalk and Fitzgerald,
2008). These terms decree that software can be used, modified and redistributed provided subsequent
modifications are made freely available to others. Also, development is accomplished through the ful-
filment of mutual expectations with respect to the activities of coding, debugging, testing and docu-
mentation. One of the most significant threats for the open source movement has been suggested to be
the ‘free rider’ phenomenon whereby someone profits from open source without reciprocating, which
thus contravenes these values of mutuality and reciprocity (Von Hippel and Von Krogh, 2003).

Much open source development is done in the absence of any legal employment contract for develop-
ers and the norms of how development is conducted are both written and unwritten. Developers are
expected to be familiar with the written rules and norms before attempting to contribute (Feller and
Fitzgerald, 2002). However, new recruits must also serve their apprenticeship in learning these rules
and norms as part of their socialization (Raymond, 2001; Gorman, 2004; Eseryel, 2014).

2.2 Innersourcing
Inner source is defined as the adoption of open source development practices within the confines of an
organization (Stol et al., 2011). Whereas well-defined methods, such as the agile Scrum approach,
have clearly defined activities (e.g., Scrum meetings), artifacts (e.g., Sprint backlog), and roles (e.g.,
Scrum Master), this is not so much the case for inner source, although common open source develop-
ment practices and roles can be identified (Stol et al., 2014). Rather than a well-defined methodology,
we consider inner source to be a development philosophy, oriented towards the open collaboration
principles of egalitarianism, meritocracy, and self-organization (Riehle et al., 2009). Within inner
source, a number of common open source development practices can be observed such as universal
access to development artifacts, transparent development, peer-review of contributions, informal
communication, and self-selection of tasks by motivated contributors (Stol et al., 2014). Which of the-
se practices are adopted as part of an inner source initiative varies per organization as each implemen-
tation of inner source is tailored to the particular context of the adopting organization (Stol and Fitz-
gerald, 2015). Existing development methods within a company may be augmented with open source
practices. However, a key tenet of inner source is the universal access to the development artifacts
throughout an organization so that anyone within the organization can potentially participate. In addi-
tion to common practices, a number of common roles can be identified (Höst et al, 2014). Inner source
projects are often ‘grassroots’ initiatives, started by individuals, project teams, or departments (Rie-
mens and van Zon, 2006; Gurbani et al., 2006; Melian, 2007). As such, the initiator typically assumes
the role of a benevolent dictator (Raymond 2001; Gurbani et al., 2006). As some contributors become
experts in parts of the project, they can be promoted to ‘trusted lieutenants’, and together with the be-
nevolent dictator form a core team (Gurbani et al., 2010). Similar governance structures are commonly
found in open source projects (Mockus et al., 2002). Additional roles may emerge in inner source,

Ågerfalk et al. / Not So Shore When Sourcing in the Age of Open

Twenty-Third European Conference on Information Systems (ECIS), Münster, Germany, 2015 4

however; Gurbani et al. (2010), for instance, identified a number of roles in the core team at Alcatel-
Lucent, each of which had a specific function in order to tailor the bazaar to a commercial software
development context.

2.3 Crowdsourcing
Using contemporary Internet technologies, organizations can tap into a global workforce consisting of
anyone with an Internet connection. Customers, or requesters, can advertise chunks of work, or tasks,
on a crowdsourcing platform, where individual workers (‘suppliers’) select those tasks that match their
interests and abilities (Hoffman, 2009). Crowdsourcing has been adopted in a wide variety of domains,
such as design and sales of T-shirts (Howe, 2008) and pharmaceutical research and development
(Lakhani and Panetta, 2007) and there are numerous crowdsourcing platforms through which custom-
ers and suppliers can find each other (Doan et al., 2011). One of the best known crowdsourcing plat-
forms is Amazon Mechanical Turk (AMT) (Ipeirotis, 2010), on which chunks of work are referred to
as Human Intelligence Tasks (HIT) or micro-tasks. Typical micro-tasks can be characterized as self-
contained, simple, repetitive, short, and requiring little time, cognitive effort and specialized skills.
Crowdsourcing has worked particularly well for such tasks (Kittur et al., 2011). Examples include tag-
ging images, and translating fragments of text. As a result, remuneration of work is typically in the or-
der of a few cents to a few US dollars. In addition to micro-tasks, there are cases of crowdsourcing al-
so of complex tasks. For instance, InnoCentive deals with problem solving and innovation projects,
which may yield payments of thousands of US dollars (Howe, 2008). Software development tasks are
more akin to the latter as they are often interdependent, complex, heterogeneous, and can require ex-
tended periods of time, significant cognitive effort and diverse sets of expertise.

Similar to the confusion surrounding the term ‘crowdsourcing’ in general, there is some confusion
about what constitutes crowdsourcing in a software development context. In particular, crowdsourcing
may be positioned as closely related to other strategies such as outsourcing (Herbsleb and Mockus,
2003) and opensourcing (Ågerfalk and Fitzgerald, 2008). For instance, open source is often cited as
the ‘Genesis’ of crowdsourcing (Howe, 2008, p.8; Kazman and Chen, 2009; LaToza et al., 2013), but
others argue that open source is, in fact, not a form of crowdsourcing (Brabham, 2013). Other terms
that have been used as synonyms are ‘peer production’ (Feller et al., 2008) and ‘commons-based peer
production’ (Benkler, 2002; Kazman and Chen, 2009), both referring to the idea that software is de-
veloped by a group of peers. While these strategies are similar in some respects, there are significant
differences that set crowdsourcing apart (Surowiecki, 2005). We adopt the following definition of
crowdsourcing (Stol and Fitzgerald, 2014): The accomplishment of specified software development
tasks on behalf of an organization by a large and typically undefined group of external people with the
requisite specialist knowledge through an open call.

We agree with Brabham (2013) who argued that collaborative initiatives such as Wikipedia are not in-
stances of crowdsourcing, as there is no initiating organization or ‘call’ for action. A number of poten-
tial benefits may arise through the use of crowdsourcing in general, and these would also be applicable
in the context of crowdsourcing software development (Stol and Fitzgerald, 2014). These include cost
reduction due to lower development costs for developers in certain regions; faster time-to-market due
to parallel development on decomposed tasks; high quality due to a broad participation and in-depth
knowledge of self-selected participants, and finally the ability to benefit from the creativity of the
‘crowd,’ (Schlagwein and Bjørn-Andersen, 2014) thus representing an instance of open innovation.

These benefits are similar as those associated with open source as discussed above. Given these bene-
fits, crowdsourcing has the potential to become a common approach to software development (Begel
et al., 2012; Kazman and Chen, 2009). The benefit of tapping into the creative capacity of a crowd is
captured well in a quote attributed to Sun Microsystems co-founder Bill Joy, “No matter who you are,
most of the smartest people work for someone else” (Lakhani and Panetta, 2007). As Lakhani and
Panetta (2007) point out, completing knowledge-intensive tasks will become increasingly challenging

Ågerfalk et al. / Not So Shore When Sourcing in the Age of Open

Twenty-Third European Conference on Information Systems (ECIS), Münster, Germany, 2015 5

in traditional closed models of proprietary innovation, if most of the knowledge exists outside an or-
ganization.

3 Research Approach
The research approach adopted can be described as a qualitative multiple case study (Yin, 2003). Data
collection comprised of in-depth interviews with 32 key stakeholders in six case studies across four
companies that had adopted these forms of sourcing, and associated open source communities in the
case of opensourcing. The companies and respondents were as follows:

• IONA Technologies, at the time of the study a NASDAQ-quoted company headquartered in
Dublin, Ireland. Incorporated open source by leading a community project to develop Celtix, an
open source Java Enterprise Service Bus. The Celtix project was hosted by an established open
source community, ObjectWeb, who specialized in developing open source middleware products.

• Philips, a global technology organization headquartered in Eindhoven, the Netherlands. One
division, Philips Healthcare specializes in medical devices and initiated the DVTk project in
collaboration with AGFA. After opensourcing the DVTk project, a community emerged around
the product with contributions from developers worldwide. The second case study was at Philips
Healthcare has also established an inner source initiative whereby a number of open source-
inspired practices and principles have been incorporated into the development process while
remaining compliant with FDA regulations. The third case study at Philips was at Philips
Research, a different division within Philips, ran an inner source project concerned with an
implementation of an internally developed file standard for storing video data.

• Telefonica I+D, the R&D division of Spanish telecom operator Telefonica, initiated the Morfeo
project which operated in the area of Service Oriented Architectures. Telefonica I+D was the
customer “engine,” releasing proprietary software and injecting resources into the community.

• TechPlatform Inc. (TPI, a pseudonym), a multinational offering cloud services and solutions. The
company employs several tens of thousands of people, and has offices and partners worldwide.

Table 1. Overview of the six cases and data collection at four organizations.

 Opensourcing Innersourcing Crowdsourcing
Cases IONA Technologies: ObjectWeb

Philips Healthcare: DVTk
Telefonica I+D: Morfeo

Philips Healthcare: Inner
Source Platform
Philips Research: Inner Source
project

TechPlatform Inc. (TPI):
Migration of field engi-
neer desktop tool to web

Data
collection

13 Interviews, incl. Chief Scientist,
admin staff, OSS director, 2 project
managers at IONA, and Chairman
and 2 developers at ObjectWeb

14 Interviews, incl. 2 direc-
tors, 4 managers, 2 architects,
2 team leads, 3 key develop-
ers, 1 DVTk developer

5 Interviews, incl. a ar-
chitect, program manag-
er, division manager,
software development
manager

We adopted qualitative data analysis techniques such as open and axial coding (Straus and Corbin,
1998). During analysis, we first characterized each individual form of sourcing and then inductively
derived a set of dimensions along which the sourcing strategies could be meaningfully compared. Our
focus was on characteristics that differentiated one form of sourcing from other forms. For instance, in
both opensourcing and innersourcing we observed a recurring theme that management cannot tell in-
dividuals what to do. However, in crowdsourcing this is a prerequisite, and thus one theme that
emerged was that of where the locus of control lies in these forms of outsourcing.

Ågerfalk et al. / Not So Shore When Sourcing in the Age of Open

Twenty-Third European Conference on Information Systems (ECIS), Münster, Germany, 2015 6

A possible concern with interpretive qualitative research is that it relies on individual interpretations of
data and different individuals may interpret the same data differently (Kaplan and Duchon, 1988). To
minimize this effect, all coding and memoing were performed as a joint effort by the three authors dur-
ing a series of online meetings during spring 2014 and two intensive co-located workshops, one in Ju-
ly 2014 and one in September 2014. This time period of more than six months offered ample oppor-
tunity to discuss and reflect on the dimensions emerging from the comparative analysis. Furthermore,
we adopted the practice of venting (Goetz and LeCompte, 1984) whereby emerging interpretations
were formally presented and discussed at two research seminars with internationally renowned re-
searchers in the area, one in May 2014 and one in October 2014. The interview recordings, their tran-
scription, and memos written during the analysis established an audit trail, which is another recom-
mended practice in qualitative data analysis (Creswell and Miller, 2000).

4 Comparing Outsourcing and Alternative Forms of Sourcing
Each of the three sourcing strategies discussed in Section 2 presents an alternative to conventional out-
sourcing. Each approach, however, differs in a number of aspects due to the specific characteristics of
these approaches. Following the inductive approach outlined in Section 3, we identified six emergent
themes that capture the key differences between these alternative forms of sourcing, and which can al-
so be used to compare them to conventional outsourcing. Table 2 illustrates how these three forms of
open-source inspired sourcing differ from outsourcing and from each other on a number of dimen-
sions. These are discussed in the remainder of this section.

Table 2. Comparison of outsourcing, opensourcing, innersourcing and crowdsourcing

 Outsourcing Opensourcing Innersourcing Crowdsourcing
Locus of
Control

Company
IP protected

Community
IP open

Company or
community
IP protected

Company
IP protected

Nature of
Workforce

Known
Narrow & deep
knowledge

Unknown, can be dif-
ficult to find out
Broad & deep
knowledge

Known
Broad & deep
knowledge

Unknown but
known to platform
Broad & deep
knowledge

Community
Motivation

Extrinsic Intrinsic and extrinsic Extrinsic and in-
trinsic

Extrinsic

Company
Motivation

Resource saving and
overcoming lack of re-
sources

Innovation
Market growth
Cost sharing
 (commodification)

Reuse
Resource saving
Innovation

Resource saving /
overcoming lack of
resources
Innovation

Duration of
Engagement

Project-specific, con-
tractual commitment

Prolonged commit-
ment

Prolonged com-
mitment

Ad hoc commit-
ment

Nature of
participation

Collaborative Co-opetive Collaborative Competitive, possi-
bly collaborative

4.1 Locus of Control
The locus of control refers to the question of who initiates and retains control in the sourcing relation-
ship. In conventional software outsourcing, the locus of control lies with the customer company who
has a certain software development task that is given to a third party to perform. In such an arrange-
ment, one company (the customer) commissions another company (the provider) to perform the work.
In this relationship, the customer takes the initiative and retains control by requesting specific and well

Ågerfalk et al. / Not So Shore When Sourcing in the Age of Open

Twenty-Third European Conference on Information Systems (ECIS), Münster, Germany, 2015 7

specified tasks to be carried out by the provider. The resulting deliverable (i.e., the software produced
by the provider) becomes the intellectual property of the paying customer.

Although a company engaging in opensourcing may ideally want to steer the long-term direction of a
project, the locus of control will often lie primarily with the community, depending on the level to
which the opensourcing company stays involved in the project’s development. It was clear in our
study of opensourcing that the customer should not seek to dominate or control the agenda as this
would lead to push-back from the community (Ågerfalk and Fitzgerald, 2008). A project manager
within IONA expressed this sentiment well:

“A company cannot just go onto the mailing list or the community, and say ‘Can you guys
build this.’ It’s [rather] about stating the overall goal and the top-level requirements you are
trying to achieve [and] then it’s driven by consensus. If people perceive you as driving your
own agenda, then you will get pushback on having things accepted.”

The resulting deliverable from opensourcing will typically be released under an open source license
and intellectual property will usually be shared openly. Alternatively, a company may opt for a dual
licensing model and thus retain some control and flexibility in relation to the IP (as was the case in the
Celtix project, for example (Ågerfalk and Fitzgerald, 2008)).

Both innersourcing and opensourcing involve the adoption of open source development philosophy by
a commercial company. However, in terms of locus of control, innersourcing can be considered a hy-
brid of opensourcing and outsourcing. Most cases of innersourcing start out as grassroots initiatives,
suggesting that the locus of control lies with the (internal) ‘community,’ i.e., the developers employed
by an organization. Besides the difference in openness and license of the software, innersourcing dif-
fers from opensourcing in that developers cannot completely ignore their position as a paid employee
of the company or the job requirements of their position within that company (Höst et al., 2014). Dif-
ferent inner source projects that can be observed in practice have different governance models. For in-
stance, the inner source initiative within Philips Healthcare has augmented the traditional governance
model, by providing mechanisms and conventions that prescribe how contributions can be made and
who is responsible for the maintenance of such contributions. This is necessary given the critical role
that the shared asset plays as the platform that underpins the product line of medical devices, which
are subject to regulatory authorities including the FDA. Nevertheless, business units within large ‘fed-
erated’ organizations often have a high degree of autonomy. While there is an organizational structure
that defines responsibilities and authority, the ‘community’ of developers within business units retain
their autonomy, as one director of technology at Philips Healthcare explained:

“We don’t have the authority to tell departments, from now on you’ll do things like this. It
doesn’t work that way. It’s mainly building a case together with people, [to discuss] what
would be sensible, and then you can get things done.”

Other inner source initiatives are more reminiscent of open source projects, whereby the locus of con-
trol lies with the ‘community.’ For example, a different inner source initiative within Philips Research
does not have formal leadership but rather a de-facto leadership that lies with the initiators of the pro-
ject. Other companies may have different models of governance, and the development of a governance
taxonomy of inner source projects is one area that we believe needs more research.

Overall, while opensourcing communities are defined by their ability to self-organize and may resist
any attempt by companies to control and dictate the development agenda, the degree of autonomy
drops in the case of inner source as the employees, even though they may be in a different division of
the organization, certainly do not possess complete autonomy over their work practices, and are less
able to self-organize as they still need to consider their responsibilities that come with their position
within the organization.

Ågerfalk et al. / Not So Shore When Sourcing in the Age of Open

Twenty-Third European Conference on Information Systems (ECIS), Münster, Germany, 2015 8

In terms of locus of control, crowdsourcing is very much along the line of outsourcing. The customer
company specifies the task to be done by the crowd community, which can result in a significant doc-
umentation effort. One architect from TPI illustrated that this process was very different from an inter-
nal development approach:

“It feels like we’ve produced a million specification documents, but obviously we haven’t. The
way we do specifications for TopCoder is entirely different to how we do them internally.”

The work is typically decomposed into competitions under which community participants submit pro-
posed solutions; in our case study, there were more than 50 different competitions. Any IP is owned
by the company. Although crowdsourcing is open source inspired, it departs significantly from open
source principles. Companies use the crowd to reduce costs or to stimulate innovation through fresh
and new ways of considering situations afforded by the crowd. However, the business model requires
that the company control the situation. Essentially, the development agenda is dictated by the compa-
ny, and crowd participants really only has the choice as to participate in a contest or not. However,
crowdsourcing participants do have the capacity to self-organize themselves, though, typically they do
not collaborate in the way that open source developers would.

4.2 Nature of Workforce
The nature of the workforce can be characterized by two aspects: the degree of ‘unknownness’ and the
nature of the knowledge that the workforce has.

In conventional outsourcing, the workforce is necessarily known; that is, an organization will choose a
supplier on the basis of their known track record and ability to deliver, and a contract will have been
put in place before any of the work is started. The level of expertise by the workforce of a known out-
sourcing supplier is typically narrow and deep: an outsourcing supplier may focus on a specific do-
main or certain technologies, and given this specialization, the level of knowledge can be very deep.

In opensourcing, the identities of contributing developers are typically not known, although contribu-
tors may be asked to sign a contribution agreement, thus revealing their identity. In a sense, the com-
pany outsources to a largely unknown workforce. The model thus assumes that the collective of devel-
opers (i.e., the community) will deliver and does not tie compensation and rewards to individual con-
tributions. By tapping into a large pool of developers, possibly spread across the globe, a company
may get access to a wide and deep level of expertise that they would not have access to otherwise —
to attract “high calibre people” as the Open Source Program Director at IONA put it.

In contrast to opensourcing, in an innersourcing context, contributors are known by necessity. User
accounts are typically linked to developers’ unique corporate email addresses. Members of the internal
community will interact on forums such as mailing lists and (IRC) Internet Relay Chat using these
corporate identifiers. While developers within the same inner source project may have never met be-
fore (not uncommon in large distributed organizations), each member of the inner source project
community will have a ‘base’ position in the company’s hierarchy. With respect to the knowledge of
the workforce, however, inner source is very similar to open source, in that an inner source project
may benefit from a wide variety of contributors from throughout the company with very specific and
deep knowledge. Depending on the size of the organization and the particular inner source project, the
size of the community may vary from several hundreds of developers as is the case in Philips
Healthcare to several tens of developers as was the case within Philips Research’s inner source project.

In crowdsourcing, developers who participate in a contest are typically unknown to a customer. While
developers need to specify certain information in order to get paid when winning a contest, very little
information is public, except for the country in which a developer is based. This is necessary as a cus-
tomer may choose to exclude submissions from certain countries. Furthermore, one of the problems
that our crowdsourcing study revealed was the lack of continuity — the “fleeting relationship” in that
developers in the crowd would not tend to wait for further competitions from a particular company but

Ågerfalk et al. / Not So Shore When Sourcing in the Age of Open

Twenty-Third European Conference on Information Systems (ECIS), Münster, Germany, 2015 9

would work on whatever competitions were open (Stol and Fitzgerald 2014). An architect involved in
the crowdsourced project at TPI illustrated this as follows:

“There is a limited amount of carry-over knowledge. We will get a few contestants that will
participate in multiple contests, but they won’t build up domain knowledge in the way that an
internal person would.”

Also, customer companies may choose to remain anonymous when crowdsourcing in an attempt to
protect IP. This creates a two-way level of unknownness as neither customer nor community know
each other in some cases.

With respect to the level of knowledge of the workforce, crowdsourcing is very similar to opensourc-
ing and innersourcing, in that the degree of knowledge tends to be broad and deep for similar reasons
as in opensourcing and innersourcing. If the available talent-pool is truly global, then there is good
reason to expect broad and deep knowledge on the topics under development.

In the case of crowdsourcing and opensourcing, the global reach of both phenomena ensures broad and
deep knowledge associated with requisite variety. It is less likely to be as pronounced in the case of
innersourcing but certainly in multinational organizations, the variety will increase as the participant
pool becomes larger through organization-wide involvement.

4.3 Community Motivation
Community motivation refers to the individual developers’ motivations and incentives and can there-
fore vary among individuals. The motivation of the developer community varies across the different
sourcing strategies. A distinction is usually drawn between intrinsic and extrinsic motivation (Ryan
and Deci, 2000). Intrinsic motivation refers to motivation derived from an individual’s pure interest or
enjoyment in the task itself. Extrinsic motivation, on the other hand, arises when an activity is driven
by the desire to receive a reward, typically a payment, or to win a competition. Such motivation is
generally external to the individual.

In a conventional outsourcing context, the community or supplier motivation is clearly extrinsic. Sup-
pliers perform a task for payment under a contract typically with penalties for late or non-performance.

Lerner and Tirole (2002) argued that the two major motivations for contributing to open source pro-
jects are career concerns and ego gratification, which they collectively referred to as the signalling in-
centive. By contributing to an open source project, developers gain reputation and status within that
community, which thus appears to be the main driving force. A Celtix project community member
even suggested that working with a company can be “almost a sort of professional honour.” Thus, the
reward can be a delayed compensation where successful open source developers could be rewarded
eventually by better job prospects. The intrinsic motivation to participate was further emphasized by a
DVTk community interviewee, who stated:

“Adding my bit to [the company’s] larger existing work in a cooperative way creates some-
thing of greater multiplied use to everybody, including myself.”

In opensourcing, payment is sometimes part of the picture and developers may find a more direct link
between their ‘voluntary’ work and potential career advancements than in traditional open source. In-
terestingly, this appears to be evolving as Riehle et al. (2014) recently reported that more than 50% of
open source code contributions occurred during office hours, which suggests a conventional paid
workforce, at least to some extent. Earlier studies have suggested about 40% (Lakhani and Wolf,
2005; Jørgensen, 2005).

Motivation of developers in an innersourcing context can be either extrinsic or intrinsic. Typically, set-
ting up an inner source initiative is not done at the request of a manager or supervisor, but rather these
are often set up by visionary individuals, or ‘champions,’ who seek to improve internal collaborations.

Ågerfalk et al. / Not So Shore When Sourcing in the Age of Open

Twenty-Third European Conference on Information Systems (ECIS), Münster, Germany, 2015 10

Inner source contributors likewise may derive enjoyment and satisfaction from contributing to a pro-
ject. One initiator of the inner source project at Philips Reseaerch commented:

“at some point [the work] is appreciated by colleagues, and at that point you also do it to help
our your colleagues, solving their problem, and that results in satisfaction because [the soft-
ware] is used by others.”

On the other hand, external ‘rewards’ may also arise in inner source when contributors are able to fin-
ish their assigned work more quickly—innersourcing offers them empowerment. Developers can
overcome their dependence on the maintainers (the core team) of an inner source project as it allows
them to fix defects or make changes themselves (in a local copy), very similar to open source projects.

In crowdsourcing, the community motivations are primarily extrinsic. On the TopCoder crowdsourc-
ing platform, various forms of remuneration (first and second prizes, reliability bonus, Digital Run
funds) are available to active participants (Stol and Fitzgerald, 2014). Furthermore, the extrinsic moti-
vation becomes even clearer given that many registered contestants will withdraw from competitions
if they perceive that they have no chance of winning a prize. Also, some developers seek an official
TopCoder rating and use that on their CVs to indicate independent validation of their technical ability.
It thus forms a career signalling incentive similar to that proposed by Lerner and Tirole (2002).

4.4 Company Motivation
Company motivation to adopt a conventional outsourcing approach includes reduced development
costs, reduced time-to-market as a result of ‘follow-the-Sun’ software development across multiple
time-zones, cross-site modularization of development work, access to a larger and better skilled devel-
oper pool, innovation and shared best practices, and a closer proximity to customers (Ågerfalk and
Fitzgerald, 2006; Ó Conchúir et al., 2009).

A distinguishing motivation for opensourcing is that of commodification (van der Linden et al., 2009;
Whelan et al., 2014). Increasingly, large parts of software systems are becoming ‘commodities’ —
non-differentiating components that, although needed for a system to function properly, do not add
any unique business value to a product. Classic examples are operating systems, database management
systems and network protocol stacks (e.g., TCP/IP). No software company will, for example, imple-
ment their own database management system (unless, of course, their core product is a database sys-
tem). Moreover, the ‘innovation happens elsewhere’ (Goldman and Gabriel, 2005) argument appears
to be a strong company incentive to engage in opensourcing since it allows companies to tap into a
global developer community with competencies and experiences that the company may not have in-
house. According to the Open Source Program Director at IONA, opensourcing provides access to
“the kind of people that I would want on my team, whether I was doing open source or not.” Since
open source developers are often also users, engaging with the community can also be a way of reach-
ing out to, and even creating, new markets.

While innersourcing refers to the application of the open source development philosophy within an or-
ganization’s boundaries, the motivations to adopt inner source differ significantly from those which
are relevant to the adoption of opensourcing. Firstly, a common reason to adopt inner source is to in-
crease internal reuse of software (Vitharana et al., 2010). By making available various internally de-
veloped software components to all departments, projects or business units, others can reuse these
components as they see fit. Inner source can also help in reducing the time-to-market; Van der Linden
(2009) reported that Philips Healthcare was able to reduce the time-to-market by at least three months.
Partly, this faster time-to-market will be a result of software reuse, but also due to the flexibility that
the inner source model allows. Product divisions are empowered to make ‘local’ changes to the inner
source product so as to allow them to overcome certain limitations (or to fix specific bugs) shortly be-
fore a product release, without escalating it to the ‘core team’ which may not have time to address the-
se issues immediately.

Ågerfalk et al. / Not So Shore When Sourcing in the Age of Open

Twenty-Third European Conference on Information Systems (ECIS), Münster, Germany, 2015 11

Besides these motivations, ‘open innovation’ is another reason why a company may want to adopt in-
ner source (Morgan et al., 2011). Similar to opensourcing, inner source projects can potentially attract
a larger pool of developers (albeit within company boundaries) than found in conventional projects —
especially in large, global organizations that employ thousands of people.

The motivation for companies who participate in crowdsourcing is certainly based on resource saving
issues. Companies may be persuaded by the savings promised by crowdsourcing platforms — a 62%
saving has been suggested for software development using TopCoder, for example, although the avail-
able evidence would not appear to support this estimate (Stol and Fitzgerald, 2014). Furthermore, a
company may not have in-house expertise in a particular topic or technology and seek to source that
from the crowd. Also, the desire for innovation is certainly a factor as companies seek to get fresh ide-
as on topics. Indeed, this aspect is heavily promoted by crowdsourcing platform providers.

4.5 Duration of Engagement
In conventional outsourcing the engagement tends to be project-specific as governed by a contract be-
tween both parties. Although a company may have a long-term relationship with a particular supplier,
it will be episodic insofar as the contractual commitment will be as defined for each engagement.

While conventional outsourcing is primarily about commissioning software development to a third-
party, opensourcing is rather about engaging in long-term collaborative activities that create and rein-
force a sustainable ecosystem of individuals and organizations (Ågerfalk and Fitzgerald, 2008). Re-
cently, Von Krogh et al. (2012) emphasized that although extrinsic motivation is important to sustain-
able community participation, long-term engagement and contribution to the community are even
more critical. This was echoed by a respondent who suggested that the interaction among company
and community developers in the IONA project was “very much techie to techie,” which created a
strong pressure to remain on the project.

Similar to opensourcing, the duration of engagement of developers in an innersourcing project tends to
be long-term as developers will have a long-term interest in the software product. However, actual ac-
tivity in terms of contributions, fixes, etc. can vary from daily activity to a very sporadic pattern, de-
pending on the type of software as well as its level of maturity. For example, developers of the inner
source project within Philips Research only worked on the project in ‘bursts of activity’ as defects or
new requirements were identified. Activity in this project would only last for a short time, after which
weeks or months could pass before the next contributions. In contrast, other inner source projects can
be in a state of perpetual development, similar to many large successful open source projects.

In crowdsourcing, the engagement between the company and community tends to be short-term as de-
fined by competitions, with ad hoc commitment from the community. This is reflected in the “fleeting
relationship” mentioned above, which characterizes the crowdsourcing company community interac-
tion (Stol and Fitzgerald, 2014). Competitions of long duration tend not to be attractive to the crowd,
and result in fewer and lower quality submissions. The recommendation on the TopCoder platform is
to have lots of competitions in parallel. Thus, the duration of engagement is geared much more to-
wards a short-term model. However, although if the duration of engagement is relatively short in
crowdsourcing, frequent engagement can emerge if a small group of participants participate in numer-
ous consecutive contests.

4.6 Nature of Participation
In an outsourcing context, the participation between customer and supplier is clearly collaborative.
Suppliers are carefully chosen on the basis of their ability to perform a particular task. The company
will decompose the work in such a way that the supplier will supply complementary offerings in a col-
laborative manner.

Ågerfalk et al. / Not So Shore When Sourcing in the Age of Open

Twenty-Third European Conference on Information Systems (ECIS), Münster, Germany, 2015 12

As noted above, the ‘free rider’ phenomenon has been identified as a threat to opensourcing. On a sim-
ilar note, the ethics of crowdsourcing has been questioned due to its taking advantage of the creativity
of the user community for commercial gains (Bruns, 2007). Successful opensourcing, however, is
characterized by reciprocity and symbiosis (cf. Dahlander and Magnusson, 2005). In fact, in addition
to individuals, the ecosystem that emerges in opensourcing is typically constituted by several commer-
cial organizations that would normally compete but instead choose to collaborate on a particular pro-
ject, thus suggesting as specific form of open innovation (Remneland Wikhamn and Wikhamn, 2013).
Such collaboration between competitors is sometimes referred to as co-opetition. “I don’t consider
IONA as a customer. IONA is a member,” was how the situation was described by the Chairman of
ObjectWeb. The Open Source Program Director at IONA confirmed this view when pointing out that:

“In a traditional market you don’t call up your competitor and be like, oh, well tell me what
your stuff does. But in open source you do.”

The nature of participation in innersourcing projects is similar to opensourcing; participants in inner
source projects are working collaboratively to improve the software. Again as in opensourcing, this
collaboration may be implicit (everybody working towards a better product, possibly on different parts
of the software) or explicit (two or more developers working and discussing the implementation of a
feature). They may work on a specific feature or module either on their own, or in collaboration with
others while communicating through email or IRC.

In crowdsourcing, the nature of participation is clearly competitive, though collaboration models may
vary across different crowdsourcing platforms. Crowd participants work on competitions in isolation
without sharing or collaborating on solutions, and the best entry is adjudged to be the winner of the
competition. One implication of the competitive nature of participation is that potential participants
may decide not to partake after all, once they find out that certain other, very successful and skillful,
members of the community are also participating, as they are expected to ‘win’ the contest anyway. In
such a case, any efforts spent in such a competition are expected to be in vain.

Interestingly, Brooks (1995) observed that software should be considered as public property and view-
able to all. This is consistent with the open source model which has had enormous success due to the
opportunities for learning that developers are afforded by being able to see the code of other develop-
ers. The nature of competition in crowdsourcing ensures that such sharing does not take place, and this
is inevitably a sub-optimal situation. Ironically, one of the problems with crowdsourcing is infor-
mation under-load as contestants have no organizational knowledge or ‘organizational memory,’ to
help interpret the requirements as specified. Furthermore, communication is typically through a nar-
row chat forum that does not facilitate any flow of rich information. Similar problems occur in the
case of opensourcing although the lack of the competitive element in opensourcing is likely to encour-
age knowledge sharing through facilities such as wikis and mailing lists. Innersourcing participants are
likely to possess more organizational knowledge to help create information redundancy.

5 Conclusion
The key contribution of this work is the articulation of how three alternative forms of open-source in-
spired sourcing (opensourcing, innersourcing and crowdsourcing) differ in significant and subtle ways
from conventional outsourcing on a range of dimensions (see Table 2). Although companies are in-
creasingly getting involved in opensourcing, little is known about these alternative models of engage-
ment. Likewise, research on inner source is scarce and a taxonomy of different inner source mecha-
nisms and models is still lacking. Crowdsourcing has attracted considerable interest in recent years,
but models of interaction have not been systematically compared beyond suggesting that some models
are competitive whereas others can be co-opetive.

By revisiting our previous research, this paper has characterized and compared three approaches to
software sourcing that are inspired by the OSS development model. The analysis led to a framework

Ågerfalk et al. / Not So Shore When Sourcing in the Age of Open

Twenty-Third European Conference on Information Systems (ECIS), Münster, Germany, 2015 13

with six dimensions along which the three approaches can be compared (see Table 2), which is dis-
cussed in Section 4. Based on this analysis, five imperatives for sourcing in the age of open stand out.
These imperatives represent conditions for which companies need to strategize, or at least become
cognizant of when adopting these emerging forms of sourcing.

First, the control of a project may, to some extent shift from a company to a developer community.
Such a shift is true for IP also: a company may need to disclose some of its IP to an open community.
We refer to this ‘letting go’ of control imperative as governance sharedness, an issue also identified
by Shaikh and Cornford (2010).

Second, sharedness is accentuated by the fact that we are dealing with a potentially unknown work-
force. This unknownness imperative means that developer location, which has been the focus of much
global software engineering research (Šmite and Wohlin, 2011), is becoming less relevant since de-
velopment can happen at any shore at any time (perhaps anyshoring would be an appropriate term).
Furthermore, while innersourcing is, per definition, in-house and crowdsourcing is a type of external
subcontracting, opensourcing can happen both internally and externally in any given project. Indeed,
there is increasing participation by companies in open source projects, and many large corporations,
such as HP, Samsung, and Wipro, now have an ‘open source community expert’ role.

Third, the success of open source inspired sourcing approaches appears strongly linked to intrinsic
motivation. The importance of this intrinsicness imperative varies across different sourcing approach-
es and is likely to be critical when reward is non-monetary, as can be the case in opensourcing.

Fourth, an important incentive for organizations to engage with these emerging forms of sourcing is
arguably a perceived potential for innovation, both in terms of innovating the software development
process (e.g. saving resources and decreasing time to market) and of innovating the software products
and services (e.g. gaining access to new markets). Thus, the innovativeness imperative is in many
ways seen as the raison d'être and as such becomes key to understanding the potential benefits of
open-source inspired sourcing.

Fifth, a basic tenet of the age of open is the new modes of collaborations that form around the co-
opetitiveness imperative whereby competing actors find mutual benefits in co-operating in certain ac-
tivities.

Thus, to understand software sourcing in the Age of Open, the important concept is no longer ‘shor-
ing,’ but rather these five imperatives (governance sharedness, unknownness, intrinsicness, innova-
tiveness and co-opetitiveness) and their implications for the development situation at hand.

In this paper we adopted a primarily descriptive approach and have not aspired to theoretical contribu-
tion beyond conceptualizing the three sourcing strategies and five imperatives. However, in keeping
with Ågerfalk (2014), we argue that our findings have important theoretical implications yet to be en-
gaged. For instance, sharedness has implications for our understanding of commodification (Van der
Linden et al., 2009) and global software engineering (Šmite and Wohlin, 2011), as well as for interna-
tional business in general (Santos et al., 2004). Similarly, unknownness could be further explored in
relation to business intelligence, forecasting and risk management (Enkel et al., 2005). The issues sur-
rounding intrinsicness can probably help shed light on the more general psychological questions of
motivation (Von Krogh et al., 2012) and also our understanding of open source as gift culture
(Bergquist and Ljungberg, 2001) and commons-based peer production (Benkler, 2002; Feller et al.,
2008; Kazman and Chen, 2009). Moreover, the importance of innovativeness and co-opetitiveness
places this research squarely in the open innovation discourse with contemporary issues of peer pro-
duction and democratization vis-à-vis business-model driven open innovation in relation to open
source services networks (Feller et al., 2008; Chesbrough, 2012).
Acknowledgements. We thank the anonymous reviewers for constructive feedback. This work was supported, in part, by
Science Foundation Ireland grant 13/RC/2094 to Lero—the Irish Software Research Centre, Enterprise Ireland grant
IR/2013/0021 to ITEA2-SCALARE (scalare.org) and the Irish Research Council New Foundations programme.

Ågerfalk et al. / Not So Shore When Sourcing in the Age of Open

Twenty-Third European Conference on Information Systems (ECIS), Münster, Germany, 2015 14

References
Ågerfalk, PJ (2014) Insufficient theoretical contribution: A conclusive rationale for rejection?

Eurpean Journal of Information Systems, Vol. 23, No. 6, pp. 593–599.
Ågerfalk, PJ and Fitzgerald, B (2006) Flexible and Distributed Software Processes: Old Petunias in

New Bowls? Communications of the ACM Vol. 49, No. 10, pp. 26-34
Ågerfalk, PJ, Fitzgerald, B and Slaughter, SA (2009). Flexible and Distributed Information Systems

Development: State of the Art and Research Challenges. Information Systems Research, Vol. 20,
No. 3, pp. 317–328.

Ågerfalk, PJ and Fitzgerald, B (2008) Outsourcing to an Unknown Workforce: Exploring
Opensourcing as a Global Sourcing Strategy, MIS Quarterly, Vol 32, No. 3, pp. 385-410

Begel, A, Herbsleb, JD and Storey, MA (2012) The Future of Collaborative Software Development.
Proceedings of the ACM Conference on Computer Supported Cooperative Work (CSCW). ACM

Benkler, Y (2002) Coase's Penguin, or, Linux and the Nature of the Firm, The Yale Law Journal, Vol.
112, No. 3, pp. 369-446.

Brabham, DC (2013) Crowdsourcing, MIT Press.
Brooks, FP (1995) The Mythical Man-Month. Addison Wesley Longman, Inc.
Bruns, A (2007) Produsage: Towards a Broader Framework for User-Led Content Creation, Proceed-

ings of the 6th ACM SIGCHI Conference on Creativity and Cognition, Washington, DC.
Carmel, E (1999) Global Teams: Collaborating Across Borders and Time Zones, Upper Saddle River,

NJ: Prentice-Hall.
Carmel, E (2006) Building Your Information Systems from the Other Side of the World: How Infosys

Manages Time Zone Differences, MISQ Executive Vol. 5, No. 1, pp. 43-53.
Carmel, E, and Agarwal, R (2001) Tactical Approaches for Alleviating Distance in Global Software

Development, IEEE Software Vol. 18, No. 2, pp. 22-29.
Carmel, E, and Tjia, P (2005) Offshoring Information Technology: Sourcing and Outsourcing to a

Global Workforce, Cambridge, NY: Cambridge University Press.
Chesbrough, H (2012) Open innovation: Where we’ve been and where we’re going, Research-

Technology Management, Vol. 55, No. 4, pp. 20–27.
Creswell, JW and Miler, DL (2000) Determining Validity in Qualitative Inquiry, Theory into Practice,

Vol. 39, No. 3, pp. 124–130.
Crowston, K, Li, Q, Wei, K, Eseryel, UY and Howison, J (2007) Self-organization of teams for

free/libre open source software development, Information and Software Technology, Vol. 49, No.
6, pp. 564-575.

Dahlander, L and Magnusson, MG (2005) Relationships between Open Source Software Companies
and Communities: Observations from Nordic Firms, Research Policy Vol. 34, pp. 481-493.

Damian, D and Moitra, D (2006) Global software development: how far have we come? IEEE
Software. Vol. 23, No. 5, pp. 17–19.

Doan, A, Ramakrishnan, R and Halevy, AY (2011) Crowdsourcing systems on the World-Wide Web,
Communications of the ACM, Vol. 54, No. 4.

Ebert, C, and De Neve, P (2001) Surviving Global Software Development, IEEE Software Vol. 18, No.
2, pp. 62-69.

Enkel, E, Kausch, C and Gassmann O (2005) Managing the risk of customer integration, European
Management Journal, Vol. 23, No. 2, pp. 203–213.

Eseryel, UY (2014) IT-Enabled Knowledge Creation for Open Innovation, Journal of the Association
for Information Systems, Vol. 15, No. 11, pp. 805–834.

Feller, J and Fitzgerald B (2002) Understanding Open Source Software Development. Pearson
Education Ltd.

Feller, J, Finnegan, P, Fitzgerald, B and Hayes, J (2008) From Peer Production to Productization: A
Study of Socially Enabled Business Exchanges in Open Source Service Networks, Information
Systems Research, Vol. 19, No. 4.

Ågerfalk et al. / Not So Shore When Sourcing in the Age of Open

Twenty-Third European Conference on Information Systems (ECIS), Münster, Germany, 2015 15

Feller J, Finnegan, P, Hayes, J and O’Reilly, P (2010) Leveraging ‘The Crowd’: An Exploration of
How Solver Brokerages Enhance Knowledge Mobility, Proceedings of the 18th European
Conference on Information Systems.

Fitzgerald, B (2004) A Critical Look at Open Source, IEEE Computer Vol. 37, No. 7, pp. 92-94.
Fitzgerald, B (2011) Open source software: Lessons from and for software engineering. IEEE

Computer Vol. 44, No. 10, pp. 25–30.
Goetz, J and LeCompte, MD (1984) Ethnography and Qualitative Design in Educational Research.

Academic Press.
Goldman, R and Gabriel, RP (2005) Innovation Happens Elsewhere: Open Source as Business Strate-

gy, Morgan Kaufmann.
Gorman, M (2004) Understanding The Linux Virtual Memory Manager, Technical Report, University

of Limerick, Ireland.
Gurbani, VK, Garvert, A and Herbsleb, JD (2006) A case study of a corporate open source

development model. Proceedings of the 28th International Conference on Software Engineering.
pp. 472-481.

Gurbani, VK, Garvert, A and Herbsleb, JD (2010) Managing a corporate open source software asset.
Communications of the ACM Vol. 53, No. 2, pp. 155–159.

Hoffmann, L (2009) Crowd Control, Communications of the ACM, Vol. 52, No. 3.
Höst, M, Stol, K and Orucevic-Alagic, A (2014) Inner Source Project Management, In: Ruhe, G and

Wohlin, C (Eds.) Software Project Management in a Changing World, Springer.
Howe, J (2008) Crowdsourcing: Why the Power of the Crowd Is Driving the Future of Business,

Crown Business.
Ipeirotis, PG (2010) Analyzing the Amazon Mechanical Turk marketplace, XRDS, Vol. 17, No. 2, pp.

16-21.
Jørgensen, N (2005) Incremental and Decentralized Integration in FreeBSD. in Perspectives on Free

and Open Source Software, J. Feller B. Fitzgerald, S. Hissam, and K. Lakhani (eds.), Cambridge,
MA: MIT Press

Kaplan, B and Duchon, D (1988) Combining Qualitative and Quantitative Methods in IS Research: A
Case Study, MIS Quarterly Vol. 12, No. 4, pp. 571-587.

Kazman, R and Chen, HM (2009) The Metropolis Model: A new Logic for Development of
crowdsourced systems, Communications of the ACM, Vol. 52, No. 7.

Kittur, A, Smus, B, Khamkar, S and Kraut, RE (2011) CrowdForge: Crowdsourcing Complex Work.
Proceedings of the ACM Symposium on User Interface Software and Technology.

Lacity, M, Khan, S, Yan, A, and Willcocks, L (2010) A Review of the IT Outsourcing Empirical
Literature and Future Research Directions, Journal of Information Technology, Vol. 25, No. 4, pp.
395-433.

Lakhani, KR, and Wolf, RG (2005) Why Hackers Do What They Do: Understanding Motivation and
Effort in Free/Open Source Software Projects. in Perspectives on Free and Open Source Software,
J. Feller B. Fitzgerald, S. Hissam, and K. Lakhani (eds.), Cambridge, MA: MIT Press

Lakhani, KR and Panetta, JA (2007) The Principles of Distributed Innovation, Innovations:
Technology, Governance, Globalization, Vol. 2, No. 3.

LaToza, TD, Towne, WB, van der Hoek, A and Herbsleb, JD (2013) Crowd Development. In
Proceedings of the 6th CHASE Workshop. San Francisco, CA, USA. IEEE.

Lerner, J, and Tirole, J (2002) Some Simple Economics of Open Source, The Journal of Industrial
Economics Vol. 50, No. 2, pp. 197-234.

Melian, C (2007) Progressive open source. Ph.D. Dissertation. Stockholm School of Economics,
Sweden.

Mockus, A, Fielding, RT, and Herbsleb, JD (2002) Two Case Studies of Open Source Software
Development: Apache and Mozilla, ACM Transactions on Software Engineering and Methodology
Vol. 11, No. 3, pp. 309-346.

Ågerfalk et al. / Not So Shore When Sourcing in the Age of Open

Twenty-Third European Conference on Information Systems (ECIS), Münster, Germany, 2015 16

Morgan, L and Finnegan, P (2010) Open innovation in secondary software firms: an exploration of
managers' perceptions of open source software, ACM SIGMIS Database, Vol. 41, No. 1, pp. 76-
95.

Morgan, L, Feller, J, and Finnegan, P (2011) Exploring inner source as a form of intraorganisational
open innovation. Proceedings of the European Conference on Information Systems, Helsinki, Fin-
land.

Nakatsu, RT and Iacovou, CL (2009) A Comparative Study of Important Risk Factors Involved in
Offshore and Domestic Outsourcing of Software Development Projects: A Two-Panel Delphi
Study, Information & Management Vol. 46, No. 1, pp 57-68.

Ó Conchúir, E, Ågerfalk, PJ, Holmström Olsson, H, and Fitzgerald, B (2009) Global software
development: never mind the problems — where are the benefits? Communications of the ACM,
Vol 52, No 8.

Raymond, ES (2001) The Cathedral & the Bazaar: Musings on Linux and Open Source by an
Accidental Revolutionary. O’Reilly Media.

Remneland Wikhamn, B and Wikhamn, W (2013) Structuring of the Open Innovation Field. Journal
of Technology Management & Innovation, Vol. 8, No. 3, pp. 173–185.

Riehle, D, Ellenberger, J, Menahem, T, Mikhailovski, B, Natchetoi, Y, Naveh, B and Odenwald, T
(2009) Open collaboration within corporations using software forges. IEEE Software Vol. 26, No.
2, pp. 52-58.

Riehle, D, Riemer, P, Kolassa, C, and Schmidt, M (2014) Paid vs. Volunteer Work in Open Source. In
Proceedings of the 47th Hawaii International Conference on System Science. pp. 3286-3295.

Riemens, B and van Zon, K (2006) PFSPD short history. http://pfspd.sourceforge.net/history.html.
Ryan, RM and Deci, EL (2000) Intrinsic and Extrinsic Motivations: Classic Definitions and New

Directions, Contemporary Educational Psychology, Vol. 25, pp. 54-67.
Santos, J, Yves D, and Williamson P (2004) Is Your Innovation Process Global? MIT Sloan

Management Review, Vol. 45, No. 4, pp. 31–37.
Schlagwein, D and Bjørn-Andersen, N (2014) Organizational Learning with Crowdsourcing: The

Revelatory Case of LEGO, Journal of the Association for Information Systems, Vol. 15, No. 11, pp.
754-778.

Shaikh, M and Cornford, T (2010) ‘Letting Go of Control’ to Embrace Open Source: Implications for
Company and Community. Proceedings of the Hawaii International Conference on System
Sciences (HICSS), Koloa, Kauai, Hawaii.

Šmite, D and Wohlin, C (2011) A whisper of evidence in global software software engineering, IEEE
Software Vol. 28, No. 4, pp. 15-18.

Šmite, D, Wohlin, C. Gorschek, T and Feldt, R (2010) Empirical evidence in global software engi-
neering: a systematic review. Empirical Software Engineering, Vol. 15, No. 1, pp. 91–118.

Stol, K, Babar, MA, Avgeriou, P and Fitzgerald, B (2011) A comparative study of challenges in
integrating open source software and inner source software. Information and Software
Technology, Vol. 53, No. 12, pp. 1319–1336.

Stol, K, Avgeriou, P, Babar, M, Lucas, Y and Fitzgerald, B (2014) Key Factors for Adopting Inner
Source, ACM Transactions on Software Engineering Methodology (TOSEM), Vol. 23, No. 2

Stol, K and Fitzgerald, B (2014) Two’s Company, Three’s a Crowd: A Case Study of Crowdsourcing
Software Development, Proceedings of the 36th International Conference on Software Engineering,
Hyderabad, India, May 2014, pp. 187-198.

Stol, K and Fitzgerald, B (2015) Inner Source—Adopting Open Source Development Practices within
Organizations: A Tutorial, IEEE Software, Vol. 32.

Strauss, A and Corbin, JM (1998) Basics of Qualitative Research: Techniques and Procedures for
Devleoping Grounded Theory. Sage Publications, Thousand Oaks, CA, USA.

Surowiecki, J (2005) The Wisdom of Crowds: Why the Many Are Smarter Than the Few, Abacus.
Tiwana, A and Keil, M (2009) Control in Internal and Outsourced Software Projects, Journal of

Management Information Systems Vol. 26, No. 3, pp 9-44.

Ågerfalk et al. / Not So Shore When Sourcing in the Age of Open

Twenty-Third European Conference on Information Systems (ECIS), Münster, Germany, 2015 17

Van der Linden, F, Lundell, B and Marttiin, P (2009) Commodification of industrial software: A case
for open source. IEEE Software, Vol. 26, No. 4, pp. 77-83.

Vitharana, P, King, J and Chapman, HS (2010) Impact of internal open source development on reuse:
participatory reuse in action, J Manage Inf Syst, Vol. 27, No. 2, pp. 277-304

Von Hippel, E, and Von Krogh, G (2003) Open Source Software and the ‘Private-Collective’
Innovation Model: Issues for Organization Science, Organization Science Vol. 14, No. 2, pp. 209-
223.

Von Krogh, G, Haefliger, S, Spaeth, S, and Wallin, MW (2012) Carrots and Rainbows: Motivation
and Social Practice in Open Source Software Development. MIS Quarterly, Vol. 36, No. 2, pp.
649–676.

Wheeler, D (2004) Why Open Source Software/Free Software (OSS/FS, FLOSS, or FOSS)? Look at
the Numbers!, available online at http://www.dwheeler.com/oss_fs_why.html.

Whelan, E, Conboy, K, Crowston, K, Morgan, L and Rossi, M (2014) Editorial: The Role of
Information Systems in Enabling Open Innovation. Journal of the Association for Information Sys-
tems, Vol. 15, No. 11, pp. xx–xxx.

Yin, RK (2003) Case Study Research: Design and Methods (3rd Ed.) Sage Publications, Thousand
Oaks, CA, USA.

