
ARTICLE IN PRESS
JID: JSS [m5G;August 11, 2015;19:59]

The Journal of Systems and Software 000 (2015) 1–14

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Continuous software engineering: A roadmap and agenda

Brian Fitzgerald, Klaas-Jan Stol∗

Lero—the Irish Software Research Centre, University of Limerick, Ireland

a r t i c l e i n f o

Article history:

Received 11 November 2014

Revised 24 April 2015

Accepted 25 June 2015

Available online xxx

Keywords:

Continuous software engineering

Lean software development

DevOps

a b s t r a c t

Throughout its short history, software development has been characterized by harmful disconnects between

important activities such as planning, development and implementation. The problem is further exacerbated

by the episodic and infrequent performance of activities such as planning, testing, integration and releases.

Several emerging phenomena reflect attempts to address these problems. For example, Continuous Integra-

tion is a practice which has emerged to eliminate discontinuities between development and deployment. In a

similar vein, the recent emphasis on DevOps recognizes that the integration between software development

and its operational deployment needs to be a continuous one. We argue a similar continuity is required be-

tween business strategy and development, BizDev being the term we coin for this. These disconnects are even

more problematic given the need for reliability and resilience in the complex and data-intensive systems be-

ing developed today. We identify a number of continuous activities which together we label as ‘Continuous ∗’

(i.e. Continuous Star) which we present as part of an overall roadmap for Continuous Software engineering.

We argue for a continuous (but not necessarily rapid) software engineering delivery pipeline. We conclude

the paper with a research agenda.

© 2015 Elsevier Inc. All rights reserved.

1

n

a

f

R

r

h

r

m

q

t

A

a

m

i

t

d

t

a

t

t

a

a

s

t

a

t

c

i

c

w

a

H

c

s

a

t

t

w

i

v

r

h

0

. Introduction

Software development has been characterized by harmful discon-

ects between important activities, such as planning, analysis, design

nd programming. This is clearly reflected in the traditional water-

all process for software development described (and criticized) by

oyce (1987). In the last two decades, there has been a widespread

ecognition that increasing the frequency of certain critical activities

elps to overcome many challenges. Practices such as ‘release early,

elease often’ are well established in open source software develop-

ent (Feller et al., 2005), which offer several benefits in terms of

uality and consistency (Michlmayr et al., 2015). The pervasive adop-

ion of agile methods (Kurapati et al., 2012; Papatheocharous and

ndreou, 2014) provides ample evidence of the need for flexibility

nd rapid adaptation in the current software development environ-

ent. Very complex and business- and safety-critical software is be-

ng developed, often by distributed teams. A tighter connection be-

ween development and execution is required to ensure errors are

etected and fixed as soon as possible. The quality and resilience of

he software is improved as a result. This is manifest in the increasing

doption of continuous integration practices. The popularity of con-

inuous integration is facilitated by the explicit recommendation of

he practice in the Extreme Programming agile method (Beck, 2000),
∗ Corresponding author. Tel.: +353 61 233737.

E-mail addresses: bf@lero.ie (B. Fitzgerald), klaas-jan.stol@lero.ie (K.J. Stol).

a

ttp://dx.doi.org/10.1016/j.jss.2015.06.063

164-1212/© 2015 Elsevier Inc. All rights reserved.

Please cite this article as: B. Fitzgerald, K.J. Stol, Continuous software engin

(2015), http://dx.doi.org/10.1016/j.jss.2015.06.063
nd indeed the practice is highly compatible with the frequent iter-

tions of software produced by agile approaches. Also, many open

ource toolsets such as Jenkins CI1 are freely available to automate

he continuous integration process which makes this practice readily

vailable to potential adopters.

However, a number of recent trends illustrate that a more holis-

ic approach is necessary rather than one which is merely focused on

ontinuous integration of software. For example, the Enterprise Ag-

le (Overby et al., 2005) and Beyond Budgeting (Bogsnes, 2008) con-

epts have emerged as a recognition that the benefits of agile soft-

are development will be sub-optimal if not complemented by an

gile approach in related organizational functions such as finance and

R (Leffingwell, 2007; Overby et al., 2005). In a similar vein, the re-

ent emphasis on DevOps recognizes that the integration between

oftware development and its operational deployment needs to be

continuous one (Debois, 2009). Complementing this, we argue that

he link between business strategy and software development ought

o be continuously assessed and improved, “BizDev” being the term

e coin for this process. Several researchers across the management,

nformation systems and software engineering disciplines have pro-

ided arguments which reinforce the BizDev concept and we elabo-

ate on this in Section 4 below.

Furthermore, the holistic approach mentioned above should not

ssume that the process is complete once customers have initially
1 https://jenkins-ci.org/

eering: A roadmap and agenda, The Journal of Systems and Software

http://dx.doi.org/10.1016/j.jss.2015.06.063
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
mailto:bf@lero.ie
mailto:klaas-jan.stol@lero.ie
https://jenkins-ci.org/
http://dx.doi.org/10.1016/j.jss.2015.06.063
http://dx.doi.org/10.1016/j.jss.2015.06.063


2 B. Fitzgerald, K.J. Stol / The Journal of Systems and Software 000 (2015) 1–14

ARTICLE IN PRESS
JID: JSS [m5G;August 11, 2015;19:59]

Table 1

Seven additional practices to scale agile to the enterprise level according to Leffingwell (2007).

Practice Description

Intentional Architecture For large systems consisting of many subsystems, agile components team fit their components into an intentional

architecture, which is component-based and is aligned with the team’s core competencies, physical location and

distribution.

Lean requirements at scale Non-functional/cross-cutting system requirements such as performance and reliability must be considered and

understood by all teams contributing to the system. Define a vision stating the overall objectives; a roadmap that defines an

implementation strategy, and defer specific requirements as long as possible, implement them just-in-time.

Systems of systems and the agile release train Create a release schedule with fixed dates that is imposed upon all teams, and leave decisions regarding the delivered

features/functionality up to those teams.

Managing highly distributed development Large-scale software development is inherently distributed, as developers are necessarily located in different physical

locations, ranging from different rooms, floors, and buildings to different countries and time zones. Additional

coordination practices and enterprise-level tool support are necessary.

Impact on customers and operations More frequent delivery has an impact to a variety of stakeholders, including sales and marketing, operations, support,

distribution organizations, and ultimately customers. The interaction with each of these stakeholders must be considered

and adapted to fit enterprise-level agile adoption.

Changing the organization Transforming the enterprise to an agile one requires a combination of top-down leadership, bottom-up adoption and

expansion and empowered managers in the middle, all with a common vision.

Measuring business performance Whereas the key measure of small-scale agile is the presence of working software, enterprise agile requires a number of

additional measures to monitor efficiency, value delivery, quality, and agility.

d

s

v

w

s

p

p

c

S

i

2

o

t

2

s

n

s

t

L

t

a

s

a

o

d

a

o

s

fi

i

a

s

a

n

adopted a software product. Digital natives, the term for those who

have been born in the technology era (Vodanovich et al., 2010)

have high expectations of software and are not put off by the high

switching costs associated with moving to alternatives. Frequently,

third-party opinions and word-of-mouth can cause customers to

switch, and software providers must be more proactive in such a

market-place. Also, privacy and trust issues loom much larger in

the data-intensive systems being used today. Run-time adaptation is

increasingly a factor as software is expected to exhibit some degree

of autonomy to respond to evolving run-time conditions.

We believe that rather than focusing on agile methods per se,

a useful concept from the lean approach, namely that of ‘flow’

(Reinertsen, 2009) is useful in considering continuous software en-

gineering. Rather than a sequence of discrete activities, performed

by clearly distinct teams or departments, the argument for contin-

uous software engineering is to establish a continuous movement,

which, we argue, closely resembles the concept of flow found in lean

manufacturing and product development (Morgan and Liker, 2006),

a school of thought that is called ‘Lean Thinking’ (Womack and Jones,

2003). In recent years, there has been much interest in lean software

development (Conboy and Fitzgerald, 2004; Fitzgerald et al., 2014;

Maglyas et al., 2012; Petersen, 2011; Wang et al., 2012), however,

there has been a frequent tendency to adopt a somewhat narrow view

on the topic by closely linking it to agile practices only.

In this paper we review a number of initiatives that are termed

‘continuous.’ This paper extends our preliminary view on this topic

(Fitzgerald and Stol, 2014). The goal of this paper is to sketch a holis-

tic view of these initiatives and position them within the continu-

ous software engineering context, and illustrate how Lean Thinking

is a useful and relevant lens to view continuous software engineer-

ing. Furthermore, we look beyond software development, and con-

sider issues such as continuous use, continuous trust, etc. and coin

the term ‘Continuous ∗’ (pronounced as “Continuous Star”) to refer to

this holistic view.

The various developments are by and large at different levels of

maturity—continuous integration is a concept and practice that has

gained widespread currency, probably in large part due to it being

a formal practice in XP. However, recent research shows that differ-

ent organizations implement this practice in different ways (Ståhl

and Bosch, 2013). In contrast, continuous delivery is an idea that

has not widely been established in the software industry. Thus, we

consider our holistic overview as a conceptual research agenda, and

we envisage future research to operationalize each of the concepts

identified, much as Ståhl and Bosch have initiated for continuous

integration.
Please cite this article as: B. Fitzgerald, K.J. Stol, Continuous software engin

(2015), http://dx.doi.org/10.1016/j.jss.2015.06.063
This paper proceeds as follows. Section 2 describes a number of

evelopments that have attempted to scale up the agile paradigm,

uch as Enterprise Agile, Beyond Budgeting and DevOps. Section 3 re-

iews a number of key concepts from the school of Lean Thinking, of

hich the concept of ‘flow’ is the most important as it can be used as a

uitable foundation for the holistic concept of ‘Continuous ∗’ that we

ropose in this paper. Section 4 presents the activities which com-

rise Continuous ∗ in more detail, and we observe how the various

oncepts of lean thinking can be identified within these activities.

ection 5 discusses a number of directions for future research and

mplications for practice.

. Trends in the software engineering landscape

A number of recent trends have focused on the need to transform

rganizations to deliver software more rapidly. We discuss these in

urn.

.1. Enterprise agile

Agile methods were initially considered to be only suitable for

mall teams, and research on agile methods has long focused quite

arrowly on the software development function only. In recent years,

everal authors have identified the need to scale the agile concept to

he enterprise level (Kettunen and Laanti, 2008; Reifer et al., 2003).

effingwell (2007), for example, documented a set of seven practices

o complement the practices that are common to agile methods such

s Scrum, XP and DSDM (see Table 1). These seven principles address

everal dimensions in which agile approaches should scale, such

s the link to other functions of the organization (e.g., marketing,

perations), the product (e.g., architecture, requirements), and the

evelopment process (e.g., distributed development). Leffingwell

lso initiated the Scaled Agile Framework (SAFe).2 The SAFe is based

n experiences of organizations that have adopted agile at enterprise

cale and describes practices and activities, roles, and artifacts.

Overby et al. (2005) defined ‘enterprise agility’ as “the ability of

rms to sense environmental change and respond appropriately,” hence

dentifying the two main components of ‘sensing’ and ‘responding’

ppropriately. As organizations may possess different capabilities to

ense and respond, these can be seen respectively as two dimensions

long which organizations may be positioned. For instance, an orga-

ization may have well-developed capabilities to sense new market
2 http://www.scaledagileframework.com/

eering: A roadmap and agenda, The Journal of Systems and Software

http://www.scaledagileframework.com/
http://dx.doi.org/10.1016/j.jss.2015.06.063


B. Fitzgerald, K.J. Stol / The Journal of Systems and Software 000 (2015) 1–14 3

ARTICLE IN PRESS
JID: JSS [m5G;August 11, 2015;19:59]

o

a

o

e

t

t

2

i

t

s

t

t

s

a

w

i

s

l

p

s

o

l

m

M

o

p

o

2

t

2

g

u

F

T

t

c

d

o

s

b

a

E

g

o

a

e

l

c

m

2

L

p

p

t

w

s

t

c

l

u

Fig. 1. Lean Thinking aims to reduce the time between order and cash (adapted from

Ohno (1988)).

Leadership Principles

• Customers. Focus everyone on improving customer outcomes, not
on hierarchical relationships.

• Organization. Organize as a network of lean, accountable teams,
not around centralized functions.

• Responsibility. Enable everyone to act and think like a leader, not
merely follow the plan.

• Autonomy. Give teams the freedom and capability to act; do not
micromanage them.

• Values. Govern through a few clear values, goals, and boundaries,
not detailed rules and budgets.

• Transparency. Promote open information for self-management; do
not restrict it hierarchically.

Process Principles

• Goals. Set relative goals for continuous improvement; do not nego-
tiate fixed performance contracts.

• Rewards. Reward shared success based on relative performance,
not on meeting fixed targets.

• Planning. Make planning a continuous and inclusive process, not a
top-down annual event.

• Controls. Base controls on relative indicators and trends, not on
variances against plan.

• Resources. Make resources available as needed, not through annual
budget allocations.

• Coordination. Coordinate interactions dynamically, not through
annual planning cycles.

Fig. 2. 12 Principles of Beyond Budgeting (Bogsnes, 2009).
pportunities, but less-developed capabilities to respond appropri-

tely (e.g., deliver newly requested features rapidly). Clearly, software

rganizations should aim at developing their sensing capabilities, for

xample through usage analytics of their software delivered to cus-

omers, as well as develop their responding capabilities, for example

hrough quickly adapting and delivering new features.

.2. DevOps

The DevOps concept (Debois, 2009) emerged from the increas-

ng disconnect between the development and operations functions

hat arise within large software companies. As organizations scale,

o do development and operations teams, and while they may ini-

ially be co-located and have close communication links, increased

eam size and more strict separation of responsibilities can weaken

uch links (Swartout, 2012). The DevOps term represents the need to

lign the development of software and the deployment of that soft-

are into production (Debois, 2011). Another trend in this context

s that software is increasingly delivered through the Internet, either

erver-side (so-called Software-as-a-Service) or as a channel to de-

iver directly to a customer’s machine or device. Furthermore, the

latforms on which this software runs become increasingly perva-

ive, such as smartphones and tablets, and an emerging trend is that

f wearable technology. Examples of software for mobile devices de-

ivered through the internet include Apple’s iOS and Google’s Android

obile operating systems.

While no common definition exists for DevOps, Humble and

olesky (2011) defined four principles:

• Culture—DevOps requires a cultural change of accepting joint re-

sponsibility for delivery of high quality software to the end-user.

This means that code no longer can be “thrown over the wall” to

operations.
• Automation—DevOps relies on full automation of the build, de-

ployment and testing in order to achieve short lead times, and

consequently rapid delivery and feedback from end-users.
• Measurement—Gaining an understanding of the current delivery

capability and setting goals for improving it can only be done

through measuring. This varies from monitoring business metrics

(e.g., revenue) to test coverage and the time to deploy a new ver-

sion of the software.
• Sharing—Sharing happens at different levels, from sharing knowl-

edge (e.g. about new functionality in a release), sharing tools and

infrastructure, as well as sharing in celebrating successful releases

to bring development and operations teams closer together.

These principles again reflect the trends of changing perspectives

n responsibility and measurement which are also found in Enter-

rise Agile. Furthermore, automation emphasizes a greater reliance

n tools and a sound development and delivery infrastructure.

.3. Beyond Budgeting

Another related trend is that of Beyond Budgeting, an innova-

ion with its roots in management accounting (Bogsnes, 2008; Lohan,

013). The Beyond Budgeting trend started when the “Beyond Bud-

eting Round Table” (BBRT) of the Consortium for Advanced Man-

facturing International (CAM-I) was founded in 1998 by Hope and

raser, and was formalized in their book (Hope and Fraser, 2003).

he Beyond Budgeting school of thinking seeks improvements over

raditional budgeting approaches, which tend to be annual time-

onsuming activities, resulting in rigid budget plans that reinforce

epartmental barriers (Lohan, 2013). Budgets serve different uses in

rganizations, including performance management and evaluation,

trategy implementation and formation (Lohan, 2013).

Traditional budgeting approaches suffer from a number of draw-

acks: they tend to be infrequent (mostly annual), time-consuming,
Please cite this article as: B. Fitzgerald, K.J. Stol, Continuous software engin

(2015), http://dx.doi.org/10.1016/j.jss.2015.06.063
nd as a result do not allow agile responses to changing markets (see

nterprise Agile, Sec. 2.1). To address these issues, the Beyond Bud-

eting management model defines a set of 12 principles which res-

nate strongly with lean principles such as defined by Liker (2004)

nd Womack and Jones (2003), organized into two sets, namely Lead-

rship principles and Process principles (see Fig. 2). Similar to the

ean philosophy, the Beyond Budgeting model advocates a customer-

entric focus, systems thinking and self-organization and empower-

ent of people within an organization.

.4. Lean startups

The principles of lean manufacturing have also influenced the

ean Startup concept (Bosch et al., 2013; Maurya, 2012; Ries, 2011,

.6). The Lean Startup method was proposed by Ries in 2011 and em-

hasizes continuous learning. Most startups fail due to the fact that

hey go out of business before sufficient revenue comes in; in other

ords, the time between ‘order’ and ‘cash’ (see Fig. 1) is too long. The

olution to this is, of course, to shorten the time between the key idea

hat a startup tries to market, and the delivery to its customers. One

ommon challenge in startups is that well-defined requirements are

acking due to a high level of uncertainty about the startup’s prod-

ct idea. In other words, an understanding of what constitutes ‘value’
eering: A roadmap and agenda, The Journal of Systems and Software

http://dx.doi.org/10.1016/j.jss.2015.06.063


4 B. Fitzgerald, K.J. Stol / The Journal of Systems and Software 000 (2015) 1–14

ARTICLE IN PRESS
JID: JSS [m5G;August 11, 2015;19:59]

Table 2

Seven types of waste according to Ohno and examples of how they can manifest in

software development.

Waste Example in software development

Overproduction Unwanted features

Waiting Waiting for build process (compilation) or

test suites to finish

Transportation / hand-overs Handing over software from an agile

development team to a traditional

operations team

Too much machining

(over-processing)

Recompiling unchanged software; running

test suites unnecessarily

Inventories Unfinished features

Moving (motion) Task switching e.g. developers working on

different projects, losing ‘state of mind’

whenever they refocus on a different project

Making defective parts and

products

Software defects

s

g

3

o

m

s

l

t

d

t

3

t

t

(

i

(

s

p

Table 3

Lean thinking terminology and examples in software development.

Lean term Example in software engineering

Andon Traffic light connected to continuous integration server – this

is a tool to achieve jidoka

Chaku Chaku Automated delivery pipeline

Genchi

Genbutsu

Daily stand-up meeting

Hanedashi Automatic ejection, for instance automatic testing of newly

checked in code

Heijunka Workload leveling of features with a kanban

Jidoka Tools and techniques to detect faults so that they can be

corrected as soon as possible, e.g., continuous integration

Kaikaku Reimplementation, architectural overhaul, transition from

waterfall to agile

Kanban Kanban board to let developers ‘pull’ stories to implement

once they have capacity to do so

Kaizen Sprint retrospective meetings, refactoring

Obeya Scrum board

Poka Yoke Fool proofing mechanisms to prevent mistakes and defects

early, e.g., syntax highlighting, unit tests, static source code

checkers such as splint
Single-minute

Exchange of

Dies (SMED)

Automatic deployment of a new software version with a

single press of a button
to the customer is unclear. Informed by the principles of lean manu-

facturing, lean startups attempt to solve this problem by continuous

learning through a process of experimentation (as discussed in more

detail below). Ries (2011) defined five principles of the Lean Startups

approach:

1. Entrepreneurs are everywhere. Ries defines a ‘startup’ as:

“a human institution designed to create new products and ser-

vices under conditions of extreme uncertainty. That means en-

trepreneurs are everywhere and the Lean Startup approach can

work in any size company, even a very large enterprise, in any

sector or industry.”

In other words, the Lean Startup approach is not restricted to star-

tups, but can also be applied within large organizations.

2. Entrepreneurship is management. Ries argues that startups require

careful management that is appropriate to deal with the extreme

uncertainty inherent in developing new ideas into products.

3. Validated learning. A core aspect of a startup is “to learn how to

build a sustainable business.” This principle highlights the need to

take the ‘scientific’ approach, namely by running frequent experi-

ments that allow entrepreneurs to evaluate their hypotheses.

4. Build-Measure-Learn. This principle summarizes the key activity

in startups, namely that of establishing a continuous cycle of get-

ting feedback. The Build-Measure-Learn cycle implies that ideas

should be implemented as products as quickly as possible, evalu-

ate customer response (e.g. its usage) and draw lessons based on

that feedback.

5. Innovation accounting. Ries argues that innovators must be held

accountable, and to facilitate that, startups need measurements,

milestones and prioritization of tasks.

As suggested by the first principle, the Lean Startup methodology

is not exclusive to startups and can also be used within large orga-

nizations. The Lean Startups movement focuses specifically on those

contexts characterized by a high degree of uncertainty. In order to re-

duce this uncertainty and get feedback on a product as soon as possi-

ble, it is important that this testing of assumptions and hypotheses is

done in short cycles.

For instance, a startup company may have an idea for a new fea-

ture that it believes will offer valuable functionality to users; how-

ever, implementing the feature would take three months. Should

the company implement this feature? Some techniques adopted in

the software industry include the presentation of mock-interfaces in

web-based systems, whereby features are ‘advertised’ in the interface

but not yet implemented. By monitoring the requests for that feature

(i.e., counting clicks) the interest for that feature can be assessed. If

nobody clicks the button, the hypothesis that the feature offers value

is rejected, and the company can refrain from implementing the fea-

ture, thus saving three months of development time. For startup com-

panies with only a few developers, this will have a significant impact

on potentially wasted development time.

Another form of experimentation is A/B testing, whereby two (or

more) different versions of a system are provided to different groups

of users. For instance, a company that wishes to test the effective-

ness of a particular interface might present two different versions to

two different groups of users. This way, the company can monitor

and compare user behavior based on the two different ‘treatments’

(the different interfaces). This form of experimentation was used by

Google, for instance, to test ‘click’ behavior based on different shades

of blue used to color page links (Feitelson et al., 2013).

The dramatic growth in the size of software systems has long been

evidenced (Müller et al., 1994; Sommerville, 2007). Also, the vast

amount of legacy systems that exist in organizations, allied to the

amount of open source software that is freely available, means that

much software development does not begin from scratch with new
Please cite this article as: B. Fitzgerald, K.J. Stol, Continuous software engin

(2015), http://dx.doi.org/10.1016/j.jss.2015.06.063
ource code, but builds on existing software. This in turn leads to a

reater need for continuous software engineering.

. Lean Thinking

The term ‘lean’ was coined by Krafcik (1988) to describe the mode

f operation in the Toyota Production System (TPS) (Liker, 2004). Nu-

erous books have been published on TPS and ‘lean manufacturing,’

uch as ‘Lean Thinking’ (Womack and Jones, 2003). While a full out-

ine of the lean philosophy is outside the scope of this paper, we in-

roduce a number of key lean concepts that can be observed in many

istinct software engineering practices (see Table 3 for a summary of

erms).

.1. Value and waste

A fundamental focus in lean thinking is to shorten the time be-

ween a customer order and the delivery of that order; any activities

hat do not add ‘value’ are considered ‘waste’ and should be removed

Ohno, 1988; Womack and Jones, 2003) (see Fig. 1). One of the found-

ng fathers of the TPS, Taiichi Ohno, identified seven types of waste

Ohno, 1988) (see Table 2), and others identified additional types

uch as unused skill and creativity. One such waste is overproduction:

roducing something that is unwanted, such as unused product
eering: A roadmap and agenda, The Journal of Systems and Software

http://dx.doi.org/10.1016/j.jss.2015.06.063


B. Fitzgerald, K.J. Stol / The Journal of Systems and Software 000 (2015) 1–14 5

ARTICLE IN PRESS
JID: JSS [m5G;August 11, 2015;19:59]

f

s

w

p

t

c

i

f

f

t

t

n

p

i

i

w

b

(

s

3

i

a

u

c

o

p

o

i

s

p

e

s

p

n

d

w

(

a

s

c

a

d

k

3

t

A

t

t

w

a

d

u

t

s

s

s

t

(

p

n

c

t

s

i

a

s

t

u

d

i

t

m

t

t

m

w

t

w

c

a

c

3

m

(

b

a

p

w

f

i

f

a

o

c

m

o

s

l

m

m

z

a

o

E

i

c

m

(

1

m

eatures. This type of waste is common in traditional plan-driven

oftware development methods, most notably the waterfall model,

hereby requirements are identified, converted into a design and im-

lemented in a product (Petersen and Wohlin, 2010). While in theory

his process should work, in practice, requirements virtually always

hange (Larman and Basili, 2003), resulting in the wrong product be-

ng built. Other authors, including Royce who documented the water-

all approach, also argued that the waterfall approach does not work

or any but the most trivial systems (Larman and Basili, 2003; Pe-

ersen and Wohlin, 2010; Royce, 1987). However, without any cus-

omer feedback as to whether a feature is needed, there may be sig-

ificant waste resulting in the development of a bloated software

roduct. Techniques such as those described above (counting clicks

n mock-interfaces) can help to gauge the level of interest in features.

One of the first steps for organizations that wish to reduce waste

n their processes is to conduct a value stream mapping exercise,

hereby the current processes are identified and visualized so as to

e able to gauge where improvements can be made. Mujtaba et al.

2010) and Khurum et al. (2014) have demonstrated the use of value

tream mapping in a software development context.

.2. Flow and batch size

As already mentioned, flow is a central concept within Lean Think-

ng (Womack and Jones, 2003). Flow can be contrasted with ‘batch-

nd-queue’ thinking, in which actions are done on batches of prod-

cts, after which they are queued for the next processing step. By

ontrast, flow refers to a connected set of value-creating actions—

nce a product feature is identified, it is immediately designed, im-

lemented, integrated, tested, and deployed. Establishing a continu-

us flow does not refer just to a software development function in

solation, but should be leveraged as an end-to-end concept that con-

iders other functions within an organization such as planning, de-

loyment, maintenance and operation.

Many traditional software development environments are still op-

rating according to the principles of batch-and-queue. While the

oftware development function might ’flow’ to some degree, the

lanning and deployment of features is still done in batches, and

ot in a continuous flowing movement. Increasingly, the software in-

ustry is adopting kanban as an alternative approach for scheduling

ork, or as a source to augment the longer established Scrum method

Fitzgerald et al., 2014). Kanban can help to level the daily workload,

concept known in lean thinking as heijunka (Liker, 2004).

Whereas agile software development is mostly focused on the

oftware development function, Lean Thinking has a very explicit fo-

us on the end-to-end process: from customer to delivery. Based on

comparison of principles and practices of agile and lean software

evelopment, Petersen (2011) concluded this end-to-end focus is the

ey difference between agile and lean.

.3. Autonomation and building-in quality

A third key concept found within TPS and lean thinking is au-

onomation, or “automation with a human touch” (Ohno, 1988, p.6).

nother term used for this is jidoka, or built-in quality. This refers to

ools and visual aids in closely monitoring quality during the produc-

ion process. For instance, an andon is a line stop indication board,

hich indicates the location and nature of troublesome situations at

glance (Ohno, 1988, p.21). This can also be observed in software

evelopment; for instance, many organizations that practice contin-

ous integration have an indicator, sometimes an actual traffic light,

hat turns to red as soon as the build fails. Continuous integration

ervers, such as Tinderbox3 provide a visual interface that can link

pecific code changes to build failures.
3 https://developer.mozilla.org/en-US/docs/Tinderbox

Please cite this article as: B. Fitzgerald, K.J. Stol, Continuous software engin

(2015), http://dx.doi.org/10.1016/j.jss.2015.06.063
Another related term is Poka Yoke which has been defined as con-

isting of checklists, test plans, quality matrices, standard architec-

ure, shared components, and standardized manufacturing processes

Morgan and Liker, 2006, p.95). Poka Yoke, or Baka-Yoke are fool

roofing mechanisms to help eliminate mistakes, and assist an engi-

eer in identifying problems as soon as possible. Software developers

an choose from a range of tools to assist them in early fault detec-

ion. Besides normal compilers which highlight errors and warnings,

pecialized tools such as splint4 can statically check software and

dentify potential errors. Many software development organizations

lso use coding standards which can help to maintain a consistent

tyle of source code, which in turn can help to prevent the introduc-

ion of programming errors. Another form of standardization is the

se of reference architectures, which can help software architects and

evelopers to prevent the mis-use of software components. Modern

ntegrated development environments (IDEs) offer built-in calcula-

ion of a variety of source code metrics; the use of object-oriented

etrics, for instance, could help to identify potential code “smells” –

his too, is a form of poka yoke.

The Japanese term Chaku Chaku means ‘load load,’ and refers to

he idea to efficiently load parts (work-in-progress) from machine to

achine, which are conveniently placed closely together. Together

ith hanedashi—automatic ejection—this can contribute to improve

he flow. This concept is also gaining increasing attention in soft-

are engineering, with practices such as continuous integration and

ontinuous delivery. Once new features, functionality or additions

re implemented, they are automatically tested, and upon successful

ompletion can be deployed automatically.

.4. Kaizen and continuous improvement

Adopting ‘lean thinking’ is a continuous cycle of process improve-

ent. Process improvement can take place through radical steps

kaikaku) in the beginning of a transformation initiative, followed

y incremental improvements (kaizen). For instance, the decision to

dopt an agile method such as Scrum to replace traditional, so-called

lan-driven methods (waterfall, V-model) is an instance of ‘kaikaku,’

hereas review and retrospective meetings at the end of a sprint are

orms of ‘kaizen.’ The goal of kaizen events is to make incremental

mprovements to the process.

Daily Scrum meetings are similar to daily build wrap-up meetings

ound within the Toyota Product Development System (TPDS), and

re an integral mechanism of genchi genbutsu, which refers to the idea

f “going to see the actual situation first hand to understand deeply the

urrent reality” (Morgan and Liker, 2006, p.173). Typically, daily Scrum

eetings take place at a Scrum Board, which can be considered an

beya, the Japanese term for “large room” or “war room.”

Research on improving agile methods has tended to focus on the

oftware development function within organizations. However, very

ittle attention has been paid to the interaction with—and improve-

ent of—functions such as planning, deployment, operations and

aintenance. This could partially explain the barriers that organi-

ations encounter in further improving their software development

ctivities, as they encounter tension points with those parts of the

rganization that are not considered in a holistic manner.

One critical development in the TPS was that of the Single-Minute

xchange of Dies (SMED) (Shingo, 1989, p.43). Initially, changing dies

n the TPS (to produce differently-shaped parts) could take a signifi-

ant amount of time, up to three hours. Through a number of adjust-

ents made after observations of how exchange of dies took place

genchi genbutsu), this time was reduced to only a few minutes (Ohno,

988, p.39), a striking reduction in time wasted. A similar develop-

ent can be observed in the Continuous Delivery approach: whereas
4 http://www.splint.org

eering: A roadmap and agenda, The Journal of Systems and Software

https://developer.mozilla.org/en-US/docs/Tinderbox
http://www.splint.org
http://dx.doi.org/10.1016/j.jss.2015.06.063


6 B. Fitzgerald, K.J. Stol / The Journal of Systems and Software 000 (2015) 1–14

ARTICLE IN PRESS
JID: JSS [m5G;August 11, 2015;19:59]

s

t

1

f

i

w

W

a

t

o

r

t

s

d

b

h

s

e

a

v

m

a

g

k

l

t

a

F

o

t

p

d

4

w

e

a

c

p

software releases could previously take hours, days, or even weeks,

Continuous Delivery allows immediate delivery of a new version of

the software with a single press of a button (Swartout, 2012).

4. Continuous∗: continuous software engineering and beyond

We view Continuous ∗ as a holistic endeavor. The ‘∗’ implies that

other ‘continuous’ activities may emerge over time which could also

be positioned within this holistic view. Continuous ∗ considers the

entire software life-cycle, within which we identify three main sub-

phases: Business Strategy & Planning, Development, and Operations.

Within these sub-phases, we position the various categories of con-

tinuous activities (see Fig. 3 and Table 4).

4.1. Business strategy & planning

Historically, a gulf has emerged between business strategy and

IT development, with IT departments being viewed as a necessary

evil rather than a strategic partner (CA Technologies, 2012). We argue

that a closer and continuous linkage between business and software

development functions is important, and term this BizDev, a phe-

nomenon which complements the DevOps one of integrating more

closely the software development and operations functions (Debois,

2009). Continuous planning would certainly facilitate BizDev as it re-

quires tighter connection between planning and execution.

We have argued earlier that several recently emerging phenom-

ena are symptomatic of a need for closer integration between busi-

ness needs and development. This is clearly evidenced in the short

cycles of agile which seek frequent feedback from customers, and

also the explicit identification of a proxy or surrogate customer in the

Scrum role of Product Owner. Likewise, the Enterprise Agile and Be-

yond Budgeting phenomena have a similar expanded rationale. Lean

thinking also advocates a more holistic end-to-end approach, much

more than is the case with agile, for example. In a software engineer-

ing context, this requires a closer connection and flow between busi-

ness and development and even business and operations, as meeting

business needs is of paramount importance (Reifer, 2002).

The disconnect between software developers and business man-

agers is an old and often cited problem. Software practitioners

have been criticized for being excessively tool-oriented, looking for
Fig. 3. Continuous∗: a holistic view on activities from bu

Please cite this article as: B. Fitzgerald, K.J. Stol, Continuous software engin

(2015), http://dx.doi.org/10.1016/j.jss.2015.06.063
implistic technocratic solutions without ever coming to terms with

he complex reality of the business process (Earl and Hopwood,

980). The eventual upshot has been that the software development

unction has receded in importance. In the past, technical staff had

nformation power as business managers were unsure as to what

as technically feasible and conceded to technical staff knowledge.

hile technical staff could gain business knowledge, business man-

gers could also gain more awareness of technical issues, and the lat-

er has largely been the case. As a consequence, the software devel-

pment function is often placed in the organizational hierarchy as

eporting to the financial function. This represents a demotion over

ime, and so it has often been characterized as a failure of technical

taff to understand business needs. Many software developers un-

erstand this and express a desire for getting involved in strategic

usiness decision-making rather than being consulted after decisions

ave been taken. The need to connect business management and the

oftware development function has been identified (e.g., Rautiainen

t al. (2003)). Lehtola et al. (2009) differentiate between upstream

ctivities (e.g., business planning) and the downstream software de-

elopment processes, and argue that the typical feature level road-

apping that takes place in software development is inadequate

nd that a more business-oriented approach is needed. They sug-

est greater involvement of extra stakeholders (R&D, sales and mar-

eting, and management) earlier in the development cycle, and col-

ectively setting the high-level targets in a co-operative fashion so

hat sales and marketing function, for example, can prepare their

ctivities at the same time as the software development activities.

urthermore, a different approach needs to be followed depending

n whether the software is for internal consumption (i.e., the cus-

omer is internal) or for sale to external customers. From a business

erspective these two cases are different, and should be managed

ifferently.

.1.1. Continuous planning

While the topic of continuous planning has only been introduced

ithin software engineering research relatively recently (Lehtola

t al., 2009), it has long been a topic of study in the strategic man-

gement literature (e.g., Mintzberg (1994); Ozden (1987)). In the

ontext of software development, planning tends to be episodic and

erformed according to a traditional cycle usually triggered by annual
siness, development, operations and innovation.

eering: A roadmap and agenda, The Journal of Systems and Software

http://dx.doi.org/10.1016/j.jss.2015.06.063


B. Fitzgerald, K.J. Stol / The Journal of Systems and Software 000 (2015) 1–14 7

ARTICLE IN PRESS
JID: JSS [m5G;August 11, 2015;19:59]

Table 4

Continuous∗ activities and definitions.

Activity Description & references

Business strategy and planning

Continuous planning Holistic endeavor involving multiple stakeholders from business and software functions whereby plans are dynamic open-ended artifacts that

evolve in response to changes in the business environment, and thus involve a tighter integration between planning and execution. (See Knight

et al. (2001), Myers (1999); Lehtola et al. (2009)).

Continuous budgeting Budgeting is traditionally an annual event, during which an organization’s investments, revenue and expense outlook are prepared for the year

to come. The Beyond Budgeting model suggests that budgeting becomes a continuous activity also, to better facilitate changes during the year.

(See Bogsnes (2008), Frow et al. (2010), Lohan (2013)).

Development

Continuous integration A typically automatically triggered process comprising inter-connected steps such as compiling code, running unit and acceptance tests,

validating code coverage, checking coding standard compliance and building deployment packages. While some form of automation is typical,

the frequency is also important in that it should be regular enough to ensure quick feedback to developers. Finally, any continuous integration

failure is also an important event which may have a number of ceremonies and highly visible artifacts to help ensure that problems leading to

integration failures are solved as quickly as possible by those responsible. (see Kim et al. (2008); Lacoste (2009); Rogers (2004); Ståhl and Bosch

(2013); Stolberg (2009))

Continuous delivery Continuous delivery is the practice of continuously deploying good software builds automatically to some environment, but not necessarily to

actual users (See Neely and Stolt (2013); Humble and Farley (2010)).

Continuous deployment Continuous deployment implies continuous delivery and is the practice of ensuring that the software is continuously ready for release and

deployed to actual customers (see Claps et al. (2015); Fitz (2009); Holmström Olsson et al. (2012)).

Continuous verification Adoption of verification activities including formal methods and inspections throughout the development process rather than relying on a

testing phase towards the end of development (see Chang et al. (1997); Cordeiro et al. (2010)).

Continuous testing A process typically involving some automation of the testing process, or prioritization of test cases, to help reduce the time between the

introduction of errors and their detection, with the aim of eliminating root causes more effectively. (See Bernhart et al. (2012); Marijan et al.

(2013); Muslu et al. (2013); Saff and Ernst (2003)).

Continuous compliance Software development seeks to satisfy regulatory compliance standards on a continuous basis, rather than operating a ‘big-bang’ approach to

ensuring compliance just prior to release of the overall product. (See Fitzgerald et al. (2013); McHugh et al. (2013)).

Continuous security Transforming security from being treated as just another non-functional requirement to a key concern throughout all phases of the

development lifecycle and even post deployment, supported by a smart and lightweight approach to identifying security vulnerabilities. (See

Merkow and Raghavan (2011)).

Continuous evolution Most software systems evolve during their lifetime. However, a system’s architecture is based a set of initial design decisions that were made

during the system’s creation. Some of the assumptions underpinning these decisions may no longer hold, and the architecture may not

facilitate certain changes. In the last years, there has been increased focus on this topic. When an architecture is unsuitable to facilitate new

requirements but shortcuts are made nevertheless, technical debt is incurred. (See Del Rosso (2009); Riaz et al. (2009)).

Operations

Continuous use Recognizes that the initial adoption versus continuous use of software decisions are based on different parameters, and that customer retention

can be a more effective strategy than trying to attract new customers. (See Bhattacherjee (2001); Gebauer et al. (2013); Ortiz de Guinea and

Markus (2009)).

Continuous trust Trust developed over time as a result of interactions based on the belief that a vendor will act cooperatively to fulfill customer expectations

without exploiting their vulnerabilities. (See Gefen et al. (2003); Hoehle et al. (2012); Zhou (2013)).

Continuous run-time

monitoring

As the historical boundary between design-time and run-time research in software engineering is blurring (Baresi and Ghezzi, 2010), in the

context of continuously running cloud services, run-time behaviors of all kinds must be monitored to enable early detection of

quality-of-service problems, such as performance degradation, and also the fulfillment of service level agreements (SLAs). (See van Hoorn et al.

(2009)).

Improvement and Innovation

Continuous

improvement

Based on lean principles of data-driven decision-making and elimination of waste, which lead to small incremental quality improvements that

can have dramatic benefits and are hard for competitors to emulate. (See Chen et al. (2007), Fowler (1999), Järvinen et al. (1999), Krasner

(1992)).

Continuous innovation A sustainable process that is responsive to evolving market conditions and based on appropriate metrics across the entire lifecycle of planning,

development and run-time operations. (See Cole (2001); Holmström Olsson et al. (2012), Ries (2011)).

Continuous

experimentation

A software development approach based on experiments with stakeholders consisting of repeated Build-Measure-Learn cycles. (See Adams

et al. (2013); Bosch (2012); Fagerholm et al. (2014); Steiber and Alänge (2013)).

fi

n

e

i

i

w

s

t

s

n

q

a

d

g

t

K

f

a

c

C

m

p

c

g

r

b

i

h

e

l

a

m

a

nancial year-end considerations, for example. This traditional plan-

ing model is effectively a batch formulation of the problem (Knight

t al., 2001). When addressing an ongoing planning problem, time

s divided into a number of planning horizons, each lasting a signif-

cant period of time. The only form of continuous planning is that

hich emerges from agile development approaches and is related to

print iterations or at best, software releases, and is not widespread

hroughout the organization. However, just as agile seeks to enable

oftware development to cope with frequent changes in the busi-

ess environment, the nature of the business environment also re-

uires that planning activities be done more frequently to ensure

lignment between the needs of the business context and software

evelopment (Lehtola et al., 2009), and also requires a tight inte-

ration between planning and execution (Knight et al., 2001). Given

he current interest in autonomous systems, it is also interesting that

night et al. (2001) identify continuous planning as a key prerequisite

or delivering autonomous systems.
Please cite this article as: B. Fitzgerald, K.J. Stol, Continuous software engin

(2015), http://dx.doi.org/10.1016/j.jss.2015.06.063
In the traditional planning model, a failure in the plan may require

nother cycle of planning activity before it is resolved, but the typical

adence of annual once-per-year planning is certainly not adequate.

ontinuous planning may be defined as a holistic endeavor involving

ultiple stakeholders from business and software functions whereby

lans are dynamic open-ended artifacts that evolve in response to

hanges in the business environment, and thus involve a tighter inte-

ration between planning and execution. In addition to iteration and

elease planning, product and portfolio planning activities would also

e conducted (Ruhe, 2010). The relationship between planning at the

ndividual project and the portfolio level is also an important issue

ere, with a need for flow between the project and portfolio level. For

xample, it is possible to you achieve success at the individual project

evel achieving close cooperation with the customer (with appropri-

te continuous feedback and learning). However, while the project

ay be a success, at the project portfolio level, there can still be over-

ll failure. A portfolio approach to project management is consistent
eering: A roadmap and agenda, The Journal of Systems and Software

http://dx.doi.org/10.1016/j.jss.2015.06.063


8 B. Fitzgerald, K.J. Stol / The Journal of Systems and Software 000 (2015) 1–14

ARTICLE IN PRESS
JID: JSS [m5G;August 11, 2015;19:59]

T

i

o

(

m

d

T

u

i

s

r

n

t

n

(

(

t

w

p

s

i

t

p

b

t

c

4

p

t

w

q

m

i

u

t

o

r

e

c

w

m

i

v

p

f

s

2

a

q

m

c

a

p

fi

b

o

s

l

s

with the holistic approach adopted in this paper. A portfolio approach

is also more likely to lead to success at the overall organizational level

(Young and Conboy, 2013), but it is still the case that more attention

is paid to individual project management rather than a portfolio ap-

proach (Gale, 2007). Further discussion of portfolio management is

beyond the scope of this paper but it is an important research area.

4.1.2. Continuous budgeting

A budget is “the formal expression of plans, goals, and objectives of

management that covers all aspects of operations for a designated time

period” (Shim and Siegel, 2008, p.1). A budget helps management of

an organization to evaluate plans and actions before implementing

them. Traditionally, budgeting is an annual event or even a multi-

year event; Shim and Siegel (2008) describe an annual event as ‘short

term,’ and a long-term to be three years or more. However, such a

long budgeting interval makes an organization rigid in terms of its de-

cision making and planning capabilities. To address this, the Beyond

Budgeting (Bogsnes, 2008) model has been proposed, which suggests

that budgeting becomes a continuous activity also, to better facili-

tate changes during the year (see Section 2.3). Frow et al. (2010) in-

troduced the concept of “continuous budgeting,” and reported that

a more flexible approach to budgeting encourages managers to make

operational decisions at their own discretion as they encounter unex-

pected events which could not have been foreseen in a master bud-

get plan. Bogsnes (2008) introduced the concept of ‘ambition to ac-

tion’ which makes the point that activities should not be simply be

mandated in a one-way fashion by management. Rather, teams must

choose their own actions, but these must be aligned with business

strategy. Thus, it links well with the BizDev concept outlined above.

Bogsnes suggested that these actions should be open and transpar-

ent, and teams should operate with a degree of self-regulation in this

regard, and not be constrained to an annual cycle.

4.2. Development

The Development phase, in our conception, comprises the main

software development activities of analysis, design, coding and verifi-

cation/testing. The following Continuous ∗ activities are considered in

this phase: continuous integration (incorporating continuous deploy-

ment/release, continuous delivery, continuous verification/testing).

In recognition of the increasing focus on security and regulatory com-

pliance, we also consider continuous compliance and continuous se-

curity activities in this phase.

4.2.1. Continuous integration and related constituent activities

Continuous integration is the best known of the Continuous ∗ fam-

ily. This is clearly helped by the fact that continuous integration is

an explicit practice identified in the very popular Extreme Program-

ming (XP) method. One consequence of this popularity however, is

that there is considerable variability in how the topic is defined and

in what activities are considered to be part of continuous integration

(Ståhl and Bosch, 2013). However, at heart, continuous integration

may be defined as a process which is typically automatically triggered

and comprises inter-connected steps such as compiling code, running

unit and acceptance tests, validating code coverage, checking com-

pliance with coding standards, and building deployment packages.

While some form of automation is typical, the frequency of integra-

tion is also important in that it should be regular enough to ensure

quick feedback to developers. Finally, continuous integration failures

are important events which may have a number of ceremonies and

highly visible artifacts to help ensure that problems leading to these

failures are prioritized for solution as quickly as possible by whoever

is deemed responsible.

Continuous integration has increased in importance due to the

benefits that have been associated with it (Ståhl and Bosch, 2013).
Please cite this article as: B. Fitzgerald, K.J. Stol, Continuous software engin

(2015), http://dx.doi.org/10.1016/j.jss.2015.06.063
hese benefits include improved release frequency and predictabil-

ty, increased developer productivity, and improved communication.

Continuous integration requires a link between development and

perations and is thus very relevant to the DevOps phenomenon

Debois, 2009). Within continuous integration, a number of further

odes of continuous activities can be identified, namely continuous

eployment and continuous delivery (Humble, 2010; Lacoste, 2009).

hese concepts are related in that continuous delivery is a prereq-

isite for continuous deployment, but the reverse is not necessar-

ly the case. That is, continuous deployment refers to releasing valid

oftware builds to users automatically, whereas continuous delivery

efers to the ability to deploy the software to some environment, but

ot automatically deploying to customers.

Neely and Stolt (2013) describe the experience of an organization

hat adopted continuous delivery. The organization implemented a

umber of lean principles, such as implementing a Kanban system

migrating from Scrum), documenting their development process

value stream mapping), and automation whenever possible. The

ransformation of continuous delivery cannot be limited to the soft-

are development team, but should also consider other functions, in

articular Sales and Marketing. This suggests that an end-to-end con-

ideration of the software development lifecycle is important, which

s also a characteristic of Lean Thinking. Neely and Stolt also reported

hat continuous monitoring (through tests, gates and checks) is im-

ortant (Poka Yoke, see Section 3.3) and the organization used a num-

er of tools to monitor the state of the system.

By moving from time-based releases (e.g., Sprint-based) to con-

inuous delivery of software, the number of reported defects (e.g., by

ustomers) is likely to level out (heijunka, see Section 3.2).

.2.2. Continuous verification and continuous testing

Given the extent to which various forms of testing are a key com-

onent of continuous integration, the topics of continuous verifica-

ion and continuous testing are also included here. The traditional

aterfall approach leads to a tendency to consider verification and

uality as separate activities, to be considered only after require-

ents, design and coding are completed (Chang et al., 1997). Ag-

le and iterative approaches have introduced prototyping which is

sed for earlier verification of requirements. Continuous verifica-

ion seeks to employ verification activities including formal meth-

ds and inspection throughout the development process rather than

elying on a testing phase towards the end of development. Chang

t al. (1997) presented a case study of the development of a mission-

ritical weapons system that followed a waterfall lifecycle augmented

ith the concept of ‘continuous verification.’ Each phase (require-

ents analysis, high level design, detailed design, code, unit test-

ng, integration testing) was augmented by adding an inspection or

erification phase that could include prototyping. Chang et al. re-

orted that only 3.8% of the total development time was needed

or testing phases, which they attributed to the additional time

pent on inspection and verification activities, which represented

1% of the total time. While verification activities took a significant

mount of time, they were found to be very effective in achieving

uality.

Inspections based on pre-defined checklists were found to be

ore effective than those performed without a checklist. This is

learly a form of task standardization (Poka Yoke, see Section 3.3).

Continuous testing seeks to integrate testing activities as closely

s possible with coding. Similar to continuous integration, there are

otential benefits to this (Muslu et al., 2013). Firstly, errors can be

xed quickly while the context is fresh in the developers’ minds and

efore these errors lead to knock-on problems. This is a clear instance

f one of the types of waste, namely that of motion (switching tasks;

ee Table 2). Also, the underlying root causes that led to the prob-

ems may be identified and eliminated. Furthermore, there is usually

ome level of automation of the testing process and a prioritization of
eering: A roadmap and agenda, The Journal of Systems and Software

http://dx.doi.org/10.1016/j.jss.2015.06.063


B. Fitzgerald, K.J. Stol / The Journal of Systems and Software 000 (2015) 1–14 9

ARTICLE IN PRESS
JID: JSS [m5G;August 11, 2015;19:59]

t

c

c

c

a

t

t

4

c

B

h

v

t

a

m

a

a

m

T

a

a

e

n

l

A

o

v

t

d

q

t

l

4

S

o

o

v

T

n

f

w

p

c

t

o

d

o

c

s

i

n

(

a

w

e

c

u

t

v

4

4

s

t

u

t

n

c

e

t

s

(

n

s

t

b

a

m

f

r

(

a

l

i

i

n

t

r

t

s

m

a

u

4

w

i

f

C

a

r

o

i

a

e

v

a

a

r

s

i

r

u

c

4

r

d

T

w

est cases (Marijan et al., 2013). Saff and Ernst (2003) introduced the

oncept of ‘continuous testing,’ and argued that continuous testing

an reduce wasted development time. Their experiment showed that

ontinuous testing can help to reduce overall development time by

s much as 15%, suggesting that continuous testing can be an effec-

ive tool to reduce one of the types of wastes, namely that of waiting

ime.

.2.3. Continuous compliance and continuous security

Agile methods were initially seen as suited to small projects with

o-located developers in non-safety critical contexts (Ambler, 2001;

oehm, 2002). However, over the past decade or so agile methods

ave been successfully applied on large projects with distributed de-

elopers (Fitzgerald et al., 2006), and in recent times, the final fron-

ier, that of applying agile methods on safety critical systems is being

ddressed. Fitzgerald et al. (2013) discuss the tailoring of the Scrum

ethod for a regulated environment, R-Scrum (i.e., Regulated Scrum)

s it is termed. In keeping with the move from a waterfall approach to

n agile approach comprising three-week sprints (a radical transfor-

ation, or kaikaku), a mode of continuous compliance was achieved.

hat is, rather than compliance being ensured on an annual basis in

single frenetic activity, new ceremonies, roles and artifacts were

dded to R-Scrum to allow compliance to be assessed at the end of

ach sprint. Non-conformance issues were fed back to sprint plan-

ing after each sprint, and this led to very efficient organizational

earning whereby non-conformance issues tended not to reappear.

s a result, the compliance assurance at final release time was more

f a formality given that the issues had been ironed out during the

arious sprints.

Continuous security seeks to prioritize security as a key concern

hroughout all phases of the development lifecycle and even post

eployment (Merkow and Raghavan, 2011). As a non-functional re-

uirement, security is often relegated to a lower priority even unin-

entionally. Continuous security also seeks to implement a smart and

ightweight approach to identifying vulnerabilities.

.2.4. Continuous evolution

Software evolution has a long history (e.g., Lehman (1980);

wanson (1976)), and as already mentioned, given the vast amount

f legacy software already developed, and the ready availability of

pen source software, much software development in practice in-

olves evolving this software rather than developing from scratch.

his has challenges in terms of the architecture not supporting the

ew functionality which may be required. This is exacerbated by the

act that the original developers are no longer available, but the soft-

are may be mission-critical and it is vital that it be evolved to sup-

ort the organization. A system’s maintainability depends on its ar-

hitecture, which is formed through a set of initial design decisions

hat were made during its creation (Jansen and Bosch, 2005). Some

f the assumptions underpinning these decisions may no longer hold

ue to changes in the context or environment in which the system

perates, or the architecture may not facilitate certain changes. In re-

ent times, increased attention has been paid to this topic using terms

uch as architectural decay and technical debt. When an architecture

s unsuited to facilitating new requirements but ‘shortcuts’ are taken

evertheless, technical debt is incurred.

Del Rosso (2009) discussed how architecture evaluation methods

such as ATAM) can be used to gauge the evolvability of a software

rchitecture. As systems evolve, an architecture may start to decay

hich results in a degenerated architecture (Riaz et al., 2009). Riaz

t al. (2009) investigated architectural decay, identifying factors that

ontribute to this, and potential measures to mitigate such decay.

Software evolution is not only dependent on the software prod-

ct’s inherent changeability (which is greatly affected by architec-

ural decisions as described above), but also on the expertise of de-

elopers (Rajlich and Bennett, 2000).
Please cite this article as: B. Fitzgerald, K.J. Stol, Continuous software engin

(2015), http://dx.doi.org/10.1016/j.jss.2015.06.063
.3. Operations

.3.1. Continuous use

While much emphasis has been placed on the initial adoption of

oftware systems, much less attention has been devoted to the con-

inuing use of these systems (Gebauer et al., 2013). That is, continuous

se cannot be automatically assumed for any given customer after

he initial decision to use the software. However, continuous use is

ecessary given that the economic payoff from systems comes from

ontinued use rather than initial adoption (Bhattacherjee, 2001). It is

stimated that it costs ten times as much to acquire a new customer

han retain and existing one (Daly, 2002, p.85).

Gebauer et al. (2013) point out that the models which are used to

tudy initial adoption (e.g., the Technology Acceptance Model (TAM)

Davis et al., 1989) and Unified Theory of Acceptance and Use of Tech-

ology (UTAUT (Venkatesh et al., 2003)) are not necessarily suited to

tudy continuous use as they do not consider variables such as au-

omatic and unconscious use, or habitual characteristics. These have

een found to be important in actual continuous use (Ortiz de Guinea

nd Markus, 2009). Also, the theoretical concepts underpinning these

odels were derived in an era where the stakeholders behaved dif-

erently. In the past, consumers of technology were digital immigrants

ather than digital natives who have known technology all their lives

Vodanovich et al., 2010). The latter are motivated very differently

nd have different attitudes to software use. Digital immigrants are

ess comfortable with technology, need to be encouraged and trained

n its use, and are less likely to experiment with new technology. Dig-

tal natives, on the other hand, are proactive in seeking out new tech-

ology and are far more likely to switch if they perceive a benefit.

A final shortcoming is that many studies consider intention to con-

inue using a system rather than the actual continuous use. The latter

equires longitudinal studies and ideally objective measures rather

han just the self-reporting measures which are typical when per-

onal intention is being assessed. The trend towards rapid experi-

entation and split A/B testing (see Section 2.4) with users to assess

cceptance of various feature sets is also relevant to the continuous

se category.

.3.2. Continuous trust

Drawing on Hoehle et al. (2012) and Pavlou and Fygenson (2006),

e define continuous trust as trust developed over time as a result of

nteractions based on the belief that a vendor will act cooperatively to

ulfill customer expectations without exploiting their vulnerabilities.

ontinuous use is strongly dependent on continuous trust. Also, just

s the initial adoption scenario is quite different to continued use, the

elationship between initial trust and continuous trust is a complex

ne. Hoehle et al. (2012) suggest that initial trust is more important

n circumstances that occur in a single transaction, such as buying

car. However, in contexts where activities are transacted over an

xtended period of time with remote providers, such as cloud ser-

ices, continuous trust is critical. Continuous trust evolves over time

nd even if initially high, it is constantly being recalculated by users,

nd can be eroded due to user experience, for instance, with secu-

ity or privacy concerns. Interestingly, even if nothing changes in a

oftware product or service, trust can be eroded solely by changes

n the external environment, for instance, by media reports on secu-

ity or privacy vulnerabilities. Given the extent to which continuous

se is dependent on continuous trust, ensuring the latter is clearly

ritical.

.3.3. Continuous run-time monitoring

The historical boundary between design-time and run-time

esearch in software engineering is blurring due to increased

ynamic adaptation at run-time (Baresi and Ghezzi, 2010).

his is especially significant in the context of cloud services

hich involve continuously running software services. Runtime
eering: A roadmap and agenda, The Journal of Systems and Software

http://dx.doi.org/10.1016/j.jss.2015.06.063


10 B. Fitzgerald, K.J. Stol / The Journal of Systems and Software 000 (2015) 1–14

ARTICLE IN PRESS
JID: JSS [m5G;August 11, 2015;19:59]

5

a

w

t

o

5

s

t

e

d

t

b

w

s

h

t

T

d

s

w

o

H

f

v

p

h

c

i

c

p

u

f

(

g

5

“

t

i

t

s

l

t

o

F

p

t

c

t

t

g

c

i

t

s

p

b

t

behaviors of all kinds, including adaptations, must be predictable

and bounded to ensure safety properties are satisfied and end-user

expectations are met, hence linking to continuous security. Van

Hoorn et al. (2009) suggest continuous monitoring may enable

early detection of quality-of-service problems, such as performance

degradation, and also the fulfillment of service level agreements

(SLAs).

4.4. Continuous improvement, continuous innovation and continuous

experimentation

Software process improvement has a long history in the software

field and is expressed in several standards such as Capability Maturity

Model Integration (CMMI), ISO 9000, and Software Process Improve-

ment and Capability dEtermination (SPICE). Also, the Scrum notion

of Sprint Retrospectives is intended to facilitate continuous improve-

ment. The topic continues to evolve with emphasis on human factors

(Korsaa et al., 2013), distributed teams (O’Connor and Basri, 2012),

and small companies (Valtierra et al., 2013).

Continuous improvement, or kaizen, is a key tenet of Lean Think-

ing (see Section 3.4). In software development terms, continuous

product improvement manifests itself in the refactoring concept, a

key practice in Extreme Programming (Fowler, 1999). Continuous

process improvement has also been a prominent theme in the soft-

ware arena (Chen et al., 2007; Järvinen et al., 1999; Krasner, 1992).

These initiatives are important contributors to software quality and

are very much based on the lean principles of using data to drive

decision-making and eliminate waste. While continuous improve-

ment initiatives are typically incremental and may appear small,

Tushman et al. (1997) argued that continuous improvement lever-

ages organizational tacit knowledge and is thus difficult for other

organizations to easily emulate. However, continuous improvement

activities are essentially reactive initiatives and eventually are lim-

ited in the extent to which they can add customer value. Hence, there

has been a move to place greater emphasis on innovation as a more

proactive strategy.

Innovation in a business context refers to the process whereby

new ideas are transformed to create business value for customers,

i.e. invention plus exploitation. Innovation has been one of the most

widely used buzzwords in recent times, especially in the context of

open innovation (Chesbrough, 2003). Also, the theme of continu-

ous innovation has emerged, most notably in the software domain

through the concept of Lean Startups (see Section 2.4). An early ac-

tivity in the continuous innovation space was that of beta testing,

which became a widespread practice in the software industry, where

it was used to elicit early customer feedback prior to formal release

of software products (Cole, 2001). The concept has matured consid-

erably over the years, and now techniques such as A/B testing are

widely used where features such as text, layouts, images and colors

are manipulated systematically and customer reaction is monitored

(Holmström Olsson et al., 2012). This can be an effective way to iden-

tify value-adding features.

Interestingly, planning has been identified as a prerequisite for

continuous innovation, in that inadequate planning and strategic

alignment at the front-end of the development process is a ma-

jor cause of failure for consumer products companies. Continuous

innovation seeks to establish a sustainable process that is respon-

sive to evolving market conditions and based on appropriate met-

rics across the entire lifecycle of planning, development and run-time

operations.

While some have seen continuous improvement and innovation

as incompatible, it has been argued that continuous improvement

can be a useful base upon which to achieve continuous innova-

tion (Cole, 2001). As a consequence, we position continuous innova-

tion and continuous improvement as the foundation upon which the

other Continuous ∗ activities can be grounded (See Fig. 3).
Please cite this article as: B. Fitzgerald, K.J. Stol, Continuous software engin

(2015), http://dx.doi.org/10.1016/j.jss.2015.06.063
. Discussion and conclusion

The current identification of Continuous Software Engineering as

n important topic is presaged by a number of emergent phenomena

hich at their core reflect the necessity of a focus on continuous ac-

ivities. Here, we identify the sub-topics that underpin the emergence

f Continuous ∗.

.1. The emergence of Continuous ∗

The numerous ‘continuous’ phenomena discussed in the previous

ection, which we have categorized under the Continuous ∗ umbrella

erm, clearly indicate a common trend, namely the increasing need to

stablish an end-to-end flow between customer demand and the fast

elivery of a product or service. This observation is, of course, not en-

irely new; within the software development context this has already

een established in the Agile Manifesto. However, the ‘big picture’ by

hich this might be achieved goes beyond the Agile Manifesto and

urfaces a more holistic set of Continuous ∗ activities as discussed

ere, such as Enterprise Agile and Beyond Budgeting. It also requires

ight integration and flow between the various continuous activities.

he age-old disconnect between the business strategy and technical

evelopment components is recognized in the BizDev concept which

eeks to tighten this integration. The Scrum role of Product Owner,

ho acts as a surrogate for the business customer, is a recognition

f the need for this connection by the agile methods community.

owever, we contend that the Product Owner concept does not go

ar enough. The central problem is captured in the apocryphal, but

ery apt quote from the business manager, who described the key

roblem with his company’s flagship software product, as being that

e knew that half of the features being offered were not used by any

ustomers, but the trouble was that he did not know which half. What

s needed is a feature analytics capability whereby a business manager

an systematically identify a feature or set of features and quickly ex-

eriment with delivery of those features, the cost of their delivery, the

sage by customers, and the actual return on investment from these

eatures, similar to what the Lean Startup approach aims to achieve

see Section 2.4). This is necessary if the “Stairway to Heaven” as sug-

ested by Holmström Olsson et al. (2012) is to be realized.

.2. The shift left strategy

Another emergent concept that is gaining in popularity is the

Shift Left” strategy. In the agile world, this has been characterized as

he need to address the technical debt that accrues from not address-

ng potentially problematic issues at the time issues are first encoun-

ered, but rather postponing these to be dealt with at a subsequent

tage (and moving them to the ‘right’ into the software development

ife cycle). While this may lead to a perception of greater speed ini-

ially, in the long run it is very detrimental. However, economic trade-

ffs may prohibit the investments needed to remove technical debt.

urther research that can help to calculate break-even points in the

aying off of technical debt is needed to assist industry in this matter.

It is worth noting that the need to shift left has a long history in

he software field. The initial concept that was proposed in what be-

ame known as the Structured Approach (Fitzgerald, 1996) was Struc-

ured Programming, on the basis that bad programming practices led

o difficulties. While this was undoubtedly true, resolving bad pro-

ramming practices through applying Structured Programming con-

epts had limited benefit as it mainly revealed the problems earlier

n the design process. This in turn led to the identification of Struc-

ured Design concepts. Again, this has limited benefit as efficient de-

ign of the wrong solution was not worthwhile when it became ap-

arent that the core problem was the incorrect analysis of the actual

usiness requirements in the first place. This series of shift left stages

hen culminated in the Structured Analysis concept.
eering: A roadmap and agenda, The Journal of Systems and Software

http://dx.doi.org/10.1016/j.jss.2015.06.063


B. Fitzgerald, K.J. Stol / The Journal of Systems and Software 000 (2015) 1–14 11

ARTICLE IN PRESS
JID: JSS [m5G;August 11, 2015;19:59]

r

a

5

o

c

5

m

s

a

s

i

m

h

g

t

n

t

c

h

5

v

b

e

t

m

4

m

t

d

p

r

w

o

c

w

s

s

t

t

e

t

i

v

m

o

m

o

c

s

t

a

a

t

t

t

c

J

w

a

m

s

(

m

w

e

o

e

i

w

t

l

5

t

u

4

S

p

o

t

c

O

w

t

5

“

p

i

w

a

a

c

v

m

c

a

p

i

t

e

f

5

t

t

t

t

5 http://www.digile.fi/N4S
The shift left strategy of identifying problems as early as possible

esonates very well with lean concepts identified in Section 3, such

s root cause analysis, jidoka, poka yoke and the andon concept.

.3. Challenges for continuous software engineering

Overall, the implementation of Continuous ∗ surfaces a number

f high level challenges for practice. We summarize these high level

hallenges here.

.3.1. Win the war, not the battles

When asked the question “What is the Toyota Production System [...]

ost people (80 percent) will echo the view of the average customer and

ay: ‘It’s a kanban system.’ ” (Shingo, 1989, p. 67). Lean experts would

rgue that kanban is a technique, a system for eliminating waste. In a

imilar fashion, we argue that true continuous software engineering

s more than adopting continuous delivery and continuous deploy-

ent. These are merely techniques, but the ultimate goal is to take a

olistic view of a software production entity, whether this be a sin-

le software organization or an ecosystem where different organiza-

ions together deliver a final product. Rather than focusing on win-

ing these battles (i.e. successfully implementing such techniques),

he holistic view that we advocate is that of winning the war; in this

ase, to focus on pursuing the Continuous ∗ agenda and establish a

olistic view from customer to delivery.

.3.2. The importance of culture and context

The success of continuous integration and deployment is often

iewed in terms of the multiple product release per day, as achieved

y Google or Facebook, for example (Feitelson et al., 2013). How-

ver, the functionality being released in these examples does not of-

en require major architectural or design changes to enable deploy-

ent; the best example of this being Google’s A/B experiments with

1 different shades of blue for displaying hyperlinks, so as to deter-

ine with evidence which shade led to the greatest number of click-

hroughs. Similarly, Amazon reportedly deploys its software into pro-

uction every 11.6 seconds (Jenkins, 2011).

By contrast, it is not obvious how to establish such a continuous

rocess in a real business environment through the ‘bleeding’ in of

eal and significant new functionality to production systems. A lot of

ork needs to be done to understand the specifics of different devel-

pment contexts. The importance of context becomes immediately

lear if we take avionics software as an example, in that few people

ould be willing to fly in an airplane in which a new version of the

oftware was being deployed every 11.6 seconds.

There are numerous dimensions in which contexts vary, for in-

tance the business domain in which organizations operate. The

elecommunication sector is an example that depends on legacy sys-

ems that may be much less amenable to a continuous software

ngineering approach. In such systems, rapid delivery of new func-

ionality is a major challenge, as there may be dozens of different

nteracting systems that together deliver hundreds of different ser-

ices to both internal and external customers. Documentation may be

issing or outdated, thus relying on the tacit knowledge of hundreds

f different engineers working in different departments. In such do-

ains, technology may also prove to be less suitable for a continu-

us software engineering approach. The mere size of legacy systems

onsisting of hundreds of thousands of lines of COBOL code, for in-

tance, represents a significant barrier to ‘quick delivery’ of new fea-

ures and services. Likewise, rapid updates of embedded systems may

lso be highly challenging as these systems require cross-compilation

nd any failures may require significant effort to recover.

In these domains that have relied on automation for decades,

here may also be a cultural tendency to assume that the status quo is

he only possible way. Similar to what could be observed in some lean

ransformations, a disbelief that “this could work here” may result in
Please cite this article as: B. Fitzgerald, K.J. Stol, Continuous software engin

(2015), http://dx.doi.org/10.1016/j.jss.2015.06.063
onsiderable resistance to change within organizations. Womack and

ones have argued that a change agent is needed: “a leader—someone

ho will take personal responsibility for change—is essential” (Womack

nd Jones, 2003, p. 313). This cultural change may very well be the

ost significant barrier to change.

Another dimension is that of software sourcing; the use of out-

ourcing of components or the use of commercial off-the-shelf

COTS) components are very common approaches in numerous do-

ains. Such dependency on software components produced else-

here may introduce additional challenges when aiming for deliv-

ring new software releases frequently. Novel approaches such as

pensourcing and crowdsourcing are emerging within the software

ngineering domain, which have consequences for aspects such as

nnovation and time-to-market (Ågerfalk et al., 2015). Again, soft-

are development is not unique in this respect; Toyota recognized

he need to consider its parts suppliers, and convinced them to adopt

ean manufacturing principles as well (Liker, 2004).

.3.3. Misplaced focus on speed rather than continuity

There is a general trend towards a ‘need for speed’ (Tabib, 2013)

hat is, a need to deliver new features and defect fixes to the end-

ser as fast as possible, as suggested by project names such as ‘Need

Speed’5 and the International Workshop on Rapid and Continuous

oftware Engineering (RCoSE) (Tichy et al., 2014). However, in this pa-

er we have argued the need for continuity. Ohno (1988) (p. 62), one

f the founding fathers of the Toyota Production System, described

he story of the tortoise and the hare:

“A slower but more consistent tortoise causes less waste and is much

more desirable than the speedy hare who races ahead and then stops

occasionally to doze.”

Ohno argued that the TPS can only be realized if all workers be-

ome tortoises, and referred here to the term ‘high-performance.’

hno’s point was that “speed is meaningless without continuity.” Like-

ise for software engineering, we argue that achieving flow and con-

inuity is much more important in first instance than speed.

.4. The need for discontinuous software engineering

Russell Ackoff, the veteran organizational theorist, concluded that

continuous improvement isn’t nearly as important as discontinuous im-

rovement” (Ackoff, 1994). Hamel captured the issue more vividly us-

ng the example of human species evolution: “if six-sigma ruled, we

ould still be slime” (Hamel, 2012). The point being made is that cre-

tivity and innovation require discontinuous thinking—in some cases

n abrupt, discontinuous change is needed rather than a gradual

hange; in lean terms: kaikaku, not kaizen. Undoubtedly, additional

alue is often delivered through a series of incremental improve-

ents, a path that can be compared to ‘kaizen.’ However, there are

ases where this path is no longer sustainable and more significant,

brupt changes are needed, very much comparable to the ‘kaikaku’

henomenon of radical change. Thus we see that while Continuous ∗

s a necessary evolution in the software development field, it is not

he only way that progress can be achieved. New development mod-

ls, such as that offered by the open source software phenomenon,

or example, would not have emerged from a continuous paradigm.

.5. Achieving the Continuous ∗ agenda

In order to achieve the envisaged Continuous ∗ agenda, we believe

hat the concepts presented in the holistic overview (see Fig. 3) need

o be further operationalized and studied. Table 5 presents some of

he highlights of the research agenda that we envisage. Research ac-

ivities focus on the three types of stakeholders that we mentioned
eering: A roadmap and agenda, The Journal of Systems and Software

http://www.digile.fi/N4S
http://dx.doi.org/10.1016/j.jss.2015.06.063


12 B. Fitzgerald, K.J. Stol / The Journal of Systems and Software 000 (2015) 1–14

ARTICLE IN PRESS
JID: JSS [m5G;August 11, 2015;19:59]

Table 5

Research agenda for continuous software engineering.

Business strategy Development Operations

• Feature analytics: What types of information does

executive management need for useful planning and

evaluation of features?

• How can the continuous evolution and

maintenance of software systems be facilitated?

• Usage: How can a continued use of product

features be predicted?

• Continuous planning: How can management define a

project portfolio in alignment with strategy and

implement continuous planning while not changing

course too frequently which would hamper product

development?

• What architectural solutions offer the highest

degree of flexibility to facilitate continuous

evolution?

• Trust: What factors help to sustain customers’

continuous trust in a product?

• Bizdev: How can the mismatch in expectations

between sales/marketing on the one hand and

development on the other hand be addressed?

• What factors influence the decision to take a

radical (discontinuous) approach to re-engineering a

product?

• DevOps: What are the key barriers between

development and operations and how can these be

removed?
• How can hardware and software co-development

follow a continuous software engineering approach?

s

t

F

R

A

A

A

A

B

B
B

B

B

B

B

B

B

C

C

C

C

C

C

C

C

D

before: executive management (business strategy), development, and

operations; for each type of stakeholder, we have identified a number

of issues that need further research.

Some concepts have been studied in greater detail than others;

for instance, Ståhl and Bosch (2013) studied continuous integration

and identified variation across different implementations. In a similar

way we envisage that other concepts, including continuous delivery,

but also continuous trust and continuous use, will manifest in dif-

ferent ways as well. Documenting these variations is one important

avenue for future research.

The BizDev concept that we advocate in this paper has thus far

been a missing link, but we believe it is essential to connect the busi-

ness and development functions within organizations. There are fun-

damental mismatches between expectations and planning strategies

of business and sales managers on the one hand, and the capabil-

ity to deliver functionality in a timely fashion on the other hand. For

instance, a very common scenario is that companies base their prod-

ucts and services on open source components; this introduces a de-

pendency on such open source communities, which complicates the

ability to make a precise planning for product release dates. Part of

realizing the Continuous ∗ agenda thus involves the development of

appropriate metrics that can help in predicting how fast interactions

with external communities and other players in an ecosystem can

be achieved. Furthermore, metrics will also be important in realiz-

ing the continuous experimentation concept, including the suggested

‘feature analytics,’ which will facilitate measuring the value-add of

specific features. Development of appropriate tools and infrastruc-

ture to support this will also be an important activity in achieving

the Continuous ∗ agenda.

5.6. Conclusion

Delivering the Continuous ∗ agenda highlights a number of signifi-

cant challenges which need to be overcome if the concept is to be suc-

cessful. This work attempts to provide a roadmap of the overall terri-

tory, an important step in its own right, since there is much confusion

as terms are used interchangeably and synonymously without rigor-

ous definition, similar to early research on agile methods (Conboy and

Fitzgerald, 2004). The need for the Continuous ∗ concept is evident

when one considers the emergence of phenomena such as Enterprise

Agile, Beyond Budgeting, DevOps, Lean Startups and many other con-

cepts from Lean Thinking in general. These are all symptomatic of the

need for a holistic and integrated approach across all the activities

that comprise software development.

Acknowledgments

We thank the anonymous reviewers for constructive feedback to

an earlier version of this paper. Thanks to Garry Lohan for his insights

on Beyond Budgeting. This work was supported, in part, by Science

Foundation Ireland grant 13/RC/2094 to Lero—the Irish Software Re-
Please cite this article as: B. Fitzgerald, K.J. Stol, Continuous software engin

(2015), http://dx.doi.org/10.1016/j.jss.2015.06.063
earch Centre (www.lero.ie), Enterprise Ireland grant IR/2013/0021 to

he ITEA2-SCALARE project, the Irish Research Council under the New

oundations programme, and the Royal Irish Academy (www.ria.ie).

eferences

ckoff, R., 1994. The learning and legacy of Dr. W. Edwards Deming. Available at:
http://www.youtube.com/watch?v=OqEeIG8aPPk (accessed on July 8, 2015).

dams, R.J., Evans, B., Brandt, J., 2013. Creating small products at a big company:
Adobe’s “pipeline” innovation process. In: Proceedings of CHI’13 Extended Ab-

stracts on Human Factors in Computing Systems. ACM, pp. 2331–2332.
˚ gerfalk, P.J., Fitzgerald, B., Stol, K., 2015. Not so shore anymore: the new imperatives

when sourcing in the age of open. In: Proceedings of the 23rd European Conference
on Information Systems.

mbler, S., 2001. When does(n’t) agile modeling make sense. http://www.

agilemodeling.com/essays/whenDoesAMWork.htm (accessed on July 8, 2015).
aresi, L., Ghezzi, C., 2010. The disappearing boundary between development-time and

run-time. In: Proceedings of the FSE/SDP Workshop on Future of Software Engi-
neering Research (FoSER’10). ACM, pp. 17–22.

eck, K., 2000. Extreme Programming Explained: Embrace Change. Addison-Wesley.
ernhart, M., Strobl, S., Mauczka, A., Grechenig, T., 2012. Applying continuous code

reviews in airport operations software. In: Proceedings of the 12th International

Conference on Quality Software, pp. 214–219.
hattacherjee, A., 2001. Understanding information systems continuance: an

expectation–confirmation model. MIS Q. 25 (3), 351–370.
oehm, B., 2002. Get ready for agile methods, with care. IEEE Comput. 35 (1), 64–69.

ogsnes, B., 2008. Implementing Beyond Budgeting: Unlocking the Performance Po-
tential. Wiley.

ogsnes, B., 2009. Keynote: beyond budgeting in a lean and agile world. In: Abrahams-

son, P., Marchesi, M., Maurer, F. (Eds.), Proceedings of XP 2009, LNBIP 31. Springer,
pp. 5–7.

osch, J., 2012. Building products as innovation experiment systems. Proceedings of
the Third International Conference on Software Business (ICSOB), LNBIP. Springer,

pp. 27–39.
osch, J., Holmström Olsson, H., Björk, J., Ljungblad, J., 2013. The early stage software

startup development model: a framework for operationalizing lean principles in

software startups. In: Fitzgerald, B., Conboy, K., Power, K., Valerdi, R., Morgan, L.,
Stol, K. (Eds.), Proceedings of the 4th International Conference on Lean Enterprise

Software and Systems, pp. 1–15.
A Technologies, 2012. The innovation imperative: Why it needs to lead now.

http://www.ca.com/us/˜/media/Files/Presentations/the-innovation-imperative-
external-presentation-final.pdf (accessed on July 8, 2015).

hang, T.-F., Danylyzsn, A., Norimatsu, S., Rivera, J., Shepard, D., Lattanze, A., Tomayko, J.,

1997. “Continuous verification” in mission critical software development. In: Pro-
ceedings of the 30th Hawaii International Conference on System Sciences, pp. 273–

284.
hen, X., Sorenson, P., Willson, J., 2007. Continuous SPA: continuous assessing and

monitoring software process. In: Proceedings of the IEEE Congress on Services
(SERVICES), pp. 153–158.

hesbrough, H., 2003. Open Innovation: The New Imperative for creating and Profiting

from Technology. Harvard Business School Press.
laps, G.G., Svensson, R.B., Aurum, A., 2015. On the journey to continuous deployment:

technical and social challenges along the way. Inf. Softw. Technol. 57 (1), 21–31.
ole, R., 2001. From continuous improvement to continuous innovation. Qual. Manage.

J. 8 (4), 7–21.
onboy, K., Fitzgerald, B., 2004. Towards a conceptual framework of agile methods. Ex-

treme Programming and Agile Methods-XP/Agile Universe 2004, LNCS, vol. 3134.
Springer, pp. 105–116.

ordeiro, L., Fischer, B., Marques-Silva, J., 2010. Continuous verification of large embed-

ded software using smt-based bounded model checking. In: Proceedings of the
17th IEEE International Conference and Workshops on Engineering of Computer-

Based Systems, pp. 160–169.
aly, J.L., 2002. Pricing for Profitability: Activity-Based Pricing for Competitive Advan-

tage. Wiley Press.
eering: A roadmap and agenda, The Journal of Systems and Software

http://dx.doi.org/10.13039/501100001602
http://www.lero.ie
http://dx.doi.org/10.13039/501100001588
http://www.ria.ie
http://www.youtube.com/watch?v=OqEeIG8aPPk
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0001
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0001
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0001
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0001
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0002
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0002
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0002
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0002
http://www.agilemodeling.com/essays/whenDoesAMWork.htm
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0003
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0003
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0003
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0004
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0004
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0005
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0005
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0005
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0005
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0005
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0006
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0006
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0007
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0007
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0008
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0008
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0009
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0009
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0010
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0010
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0011
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0011
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0011
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0011
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0011
http://www.ca.com/us/~/media/Files/Presentations/the-innovation-imperative-external-presentation-final.pdf
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0012
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0012
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0012
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0012
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0012
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0012
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0012
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0012
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0013
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0013
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0013
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0013
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0014
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0014
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0015
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0015
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0015
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0015
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0016
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0016
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0017
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0017
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0017
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0018
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0018
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0018
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0018
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0019
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0019
http://dx.doi.org/10.1016/j.jss.2015.06.063


B. Fitzgerald, K.J. Stol / The Journal of Systems and Software 000 (2015) 1–14 13

ARTICLE IN PRESS
JID: JSS [m5G;August 11, 2015;19:59]

D

D

D
D

E

F

F

F

F

F

F

F

F

F

F
F

G

G

G

H
H

H

H

H

H

H

J

J

J
K

K

K

K

K

K

K

K

L

L

L

L

L

L
L

M

M

M

M

M

M

M
M

M

M

M

M

N

O

O

O

O

O

P

P

P

P

R

R

R

R

R

R

avis, F., Bagozzi, R., Warshaw, P., 1989. User acceptance of computer technology: a
comparison of two theoretical models. Management Science 35 (8), 982–1003.

ebois, P., 2009. DevOps Days Ghent. http://www.devopsdays.org/events/2009-ghent/
(accessed on July 8, 2015).

ebois, P., 2011. Devops: a software revolution in the making? Cutter IT J. 24 (8).
el Rosso, C., 2009. Continuous evolution through software architecture evaluation: a

case study. J. Softw. Maint. Evol.: Res. Pract. 18 (5), 351–383.
arl, M., Hopwood, A., 1980. From management information to information manage-

ment. Trends in Information Systems. North-Holland Publishing Co. Amsterdam,

The Netherlands, pp. 315–325.
agerholm, F., Guinea, A.S., Mäenpää, H., Münch, J., 2014. Building blocks for continuous

experimentation. In: Tichy, M., Bosch, J., Goedicke, M., Larsson, M. (Eds.), Proceed-
ings of the 1st International Workshop on Rapid Continuous Software Engineering

(RCoSE). ACM, pp. 26–35.
eitelson, D., Frachtenberg, E., Beck, K., 2013. Development and deployment at face-

book. IEEE Internet Comput. 17 (4), 8–17.

eller, J., Fitzgerald, B., Hissam, S., Lakhani, K., 2005. Perspectives on Free and Open
Source Software. MIT Press.

itz, T., 2009. Continuous deployment at IMVU: doing the impossible fifty times a
day. http://timothyfitz.com/2009/02/10/continuous-deployment-at-imvu-doing-

the-impossible-fifty-times-a-day/ (accessed on July 8, 2015).
itzgerald, B., 1996. Formalized systems development methodologies: a critical per-

spective. Inf. Syst. J. 6 (1), 3–23.

itzgerald, B., Hartnett, G., Conboy, K., 2006. Customising agile methods to software
practices at Intel Shannon. Eur. J. Inf. Syst. 15 (2), 197–210.

itzgerald, B., Musiał, M., Stol, K., 2014. Evidence-based decision making in lean soft-
ware project management. In: Proceedings of the 36th International Conference

on Software Engineering (ICSE-SEIP). ACM, pp. 93–102.
itzgerald, B., Stol, K., 2014. Continuous software engineering and beyond: Trends and

challenges. In: Proceedings of the First International Workshop on Rapid and Con-

tinuous Software Engineering (RCoSE). ACM, pp. 1–9.
itzgerald, B., Stol, K., O’Sullivan, R., O’Brien, D., 2013. Scaling agile methods to regulated

environments: an industry case study. In: Proceedings of the 35th International
Conference on Software Engineering (ICSE-SEIP), pp. 863–872.

owler, M., 1999. Refactoring: Improving the Design of Existing Code. Addison-Wesley.
row, N., Marginson, D., Ogden, S., 2010. “Continuous” budgeting: reconciling budget

flexibility with budgetary control. Account., Organ. Soc. 35 (4), 444–461.

ale, A., 2007, The Wiley Guide to Project Organisation and Project Management Com-
petencies. In: Morris, P., Pinto, J. (Eds.). Wiley & Sons, pp. 143–167.

ebauer, L., Sollner, M., Leimeister, J., 2013. Towards understanding the formation of
continuous IT use. In: Proceedings of the 34th International Conference on Infor-

mation Systems.
efen, D., Karahanna, E., Straub, D., 2003. Trust and tam in online shopping: an inte-

grated model. MIS Q. 27 (1), 51–90.

amel, G., 2012. What Matters Now. Jossey Bass.
oehle, H., Huff, S., Goode, S., 2012. The role of continuous trust in information systems

continuance. J. Comput. Inf. Syst. 52 (4), 1–9.
olmström Olsson, H., Alahyari, H., Bosch, J., 2012. Climbing the “stairway to heaven”:

a multiple-case study exploring barriers in the transition from agile develop-
ment towards continuous deployment of software. In: Proceedings of the 38th EU-

ROMICRO Conference on Software Engineering and Advanced Applications (SEAA),
pp. 392–399.

ope, J., Fraser, R., 2003. Beyond budgeting: how managers can break free from the

annual performance trap. In: Proceedings of the Harvard Business Review.
umble, J., 2010. Continuous delivery vs continuous deployment.

http://continuousdelivery.com/2010/08/continuous-delivery-vs-continuous-
deployment/ (accessed on July 8, 2015).

umble, J., Farley, D., 2010. Continuous Delivery: Reliable Software Releases through
Build, Test, and Deployment Automation. Addison-Wesley.

umble, J., Molesky, J., 2011. Why enterprises must adopt devops to enable continuous

delivery. Cutter IT J. 24 (8), 6–12.
ansen, A., Bosch, J., 2005. Software architecture as a set of architectural design deci-

sions. In: Proceedings of teh 5th Working IEEE/IFIP Conference on Software Archi-
tecture, pp. 109–120.

ärvinen, J., Hamann, D., van Solingen, R., 1999. On integrating assessment and mea-
surement: towards continuous assessment of software engineering processes. In:

6th International Software Metrics Symposium.

enkins, J., 2011. Velocity culture. In: Talk at Velocity 2011 Conference.
ettunen, P., Laanti, M., 2008. Combining agile software projects and large-scale orga-

nizational agility. Softw. Process: Improv. Pract. 13 (2), 183–193.
hurum, M., Petersen, K., Gorschek, T., 2014. Extending value stream mapping through

waste definition beyond customer perspective. J. Softw.: Evol. Process 26 (12),
1074–1105.

im, S., Park, S., Yun, J., Lee, Y., 2008. Automated continuous integration of

component-based software: an industrial experience. In: Proceedings of the 23rd
IEEE/ACM International Conference on Automated Software Engineering (ASE), pp.

423–426.
night, R., Rabideau, G., Chien, S., Engelhardt, B., Sherwood, R., 2001. Casper: space

exploration through continuous planning. IEEE Intell. Syst. 16 (5), 70–75.
orsaa, M., Johansen, J., Schweigert, T., Vohwinkel, D., Messnarz, R., Nevalainen, R.,

Biro, M., 2013. The people aspects in modern process improvement management

approaches. J. Softw.: Evol. Process 25 (4), 381–391.
rafcik, J., 1988. Triumph of the lean production system. MIT Sloan Manage. Rev. 30 (1),

41–52.
rasner, H., 1992. The ASPIRE approach to continuous software process improvement.

In: Proceedings of the 2nd International Conference on Systems Integration.
Please cite this article as: B. Fitzgerald, K.J. Stol, Continuous software engin

(2015), http://dx.doi.org/10.1016/j.jss.2015.06.063
urapati, N., Manyam, V.S.C., Petersen, K., 2012. Agile software development practice
adoption survey. In: Proceedings of the XP 2012, LNBIP 111, pp. 16–30.

acoste, F., 2009. Killing the gatekeeper: introducing a continuous integration system.
In: Proceedings of the Agile Conference, pp. 387–392.

arman, C., Basili, V.R., 2003. Iterative and incremental developments: a brief history.
IEEE Comput. 36 (6), 47–56.

effingwell, D., 2007. Scaling Software Agility: Best Practices for Large Enterprises.
Addison–Wesley.

ehman, M., 1980. On understanding laws, evolution, and conservation in the large-

program life cycle. J. Syst. Softw. 1, 213–221.
ehtola, L., Kauppinen, M., Vähäniitty, J., Komssi, M., 2009. Linking business and re-

quirements engineering: is solution planning a missing activity in software prod-
uct companies? Requir. Eng. 14 (2), 113–128.

iker, J.K., 2004. The Toyota Way. McGraw Hill.
ohan, G., 2013. A brief history of budgeting: reflections on beyond budgeting, its link to

performance management and its appropriateness for software development. In:

Fitzgerald, B., Conboy, K., Power, K., Valerdi, R., Morgan, L., Stol, K. (Eds.), Proceed-
ings of the 4th International Conference on Lean Enterprise Software and Systems,

LNBIP, 167. Springer, pp. 81–105.
aglyas, A., Nikula, U., Smolander, K., 2012. Lean solutions to software product man-

agement problems. IEEE Softw. 29 (5), 40–46.
arijan, D., Gotlieb, A., Sen, S., 2013. Test case prioritization for continuous regression

testing: an industrial case study. In: Proceedings of the 29th IEEE International

Conference on Software Maintenance, pp. 540–543.
aurya, A., 2012. Running Lean, 2nd edition O’Reilly Media Inc.

cHugh, M., Mc Caffery, F., Fitzgerald, B., Stol, K., Casey, V., Coady, G., 2013. Balancing
agility and discipline in a medical device software organization. Proceedings of the

13th International SPICE Conference, Software Process Improvement and Capabil-
ity Determination, Communications in Computer and Information Science, 349.

Springer, pp. 199–210.

erkow, M., Raghavan, L., 2011. An ecosystem for continuously secure application soft-
ware. CrossTalk March/April.

ichlmayr, M., Fitzgerald, B., Stol, K., 2015. Why and how should open source projects
adopt time-based releases? IEEE Softw. 32 (2), 55–63.

intzberg, H., 1994. The Rise and Fall of Strategy Planning. Prentice Hall.
organ, J., Liker, J., 2006. The Toyota Product Development System. Productivity Press.

ujtaba, S., Feldt, R., Petersen, K., 2010. Waste and lead time reduction in a software

product customization process with value stream maps. In: Proceedings of the 21st
Australian Software Engineering Conference.

üller, H.A., Wong, K., Tilley, S.R., 1994. Understanding software systems using reverse
engineering technology. In: The 62nd Congress of L’Association Canadienne Fran-

caise pour l’Avancement des Sciences Proceedings (ACFAS), pp. 41–48.
uslu, K., Brun, Y., Meliou, A., 2013. Data debugging with continuous testing. In: Pro-

ceedings of the 2013 9th Joint ESEC/FSE Meeting on Foundations of Software Engi-

neering, pp. 631–634.
yers, K., 1999. CPEF: a continuous planning and execution framework. AI Magazine

20 (4), 63–69.
eely, S., Stolt, S., 2013. Continuous delivery? easy! just change everything (well,

maybe it is not that easy). In: Proceedings of the Agile Conference, pp. 121–128.
’Connor, R., Basri, S., 2012. The effect of team dynamics on software development

process improvement. Int. J. Human Cap. Inf. Technol. Prof. 3, 13–26.
hno, T., 1988. Toyota Production System: Beyond Large-Scale Production. CRC Press.

rtiz de Guinea, A., Markus, M., 2009. Why break the habit of a lifetime? rethinking

the roles of intention, habit, and emotion in continuing information technology
use. MIS Q. 33 (3), 433–444.

verby, E., Bharadwaj, A., Sambamurthy, V., 2005. A framework for enterprise agility
and the enabling role of digital options, business agility and information technol-

ogy diffusion. Business Agility and Information Technology Diffusion, IFIP Interna-
tional Federation for Information Processing, vol. 180. Springer, pp. 295–312.

zden, M., 1987. A dynamic planning technique for continuous activities under multi-

ple resource constraints. Manage. Sci. 33 (10), 1333–1347.
apatheocharous, E., Andreou, A.S., 2014. Empirical evidence and state of practice of

software agile teams. J. Softw.: Evol. Process 26 (9), 855–866.
avlou, P., Fygenson, M., 2006. Understanding and predicting electronic commerce

adoption: an extension of the theory of planned behavior. MIS Q. 30 (1), 115–143.
etersen, K., 2011. Is lean agile and agile lean? a comparison between two software

development paradigms. Modern Software Engineering Concepts and Practices:

Advanced Approaches. IGI Global.
etersen, K., Wohlin, C., 2010. The effect of moving from a plan-driven to an incremen-

tal software development approach with agile practices: An industrial case study.
Empir. Softw. Eng. 15 (6), 654–693.

ajlich, V.T., Bennett, K.H., 2000. A staged model for the software life cycle. Computer
33 (7), 66–71.

autiainen, K., Vuornos, L., Lassenius, C., 2003. An experience in combining flexibil-

ity and control in a small company?s software product development process. In:
Proceedings of the ACM-IEEE International Symposium on Empirical Software En-

gineering (ISESE), pp. 28–37.
eifer, D., 2002. Making the Software Business Case. Addison Wesley.

eifer, D.J., Maurer, F., Erdogmus, H., 2003. Scaling agile methods. IEEE Softw. 20 (4),
12–14.

einertsen, D.G., 2009. The Principles of Product Development Flow. Celeritas

Publishing.
iaz, M., Sulayman, M., Naqvi, H., 2009. Architectural decay during continuous soft-

ware evolution and impact of ‘design for change’ on software architecture. In: Pro-
ceedings of the International Conference on Advanced Software Engineering and

Its Applications, pp. 119–126.
eering: A roadmap and agenda, The Journal of Systems and Software

http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0020
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0020
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0020
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0020
http://www.devopsdays.org/events/2009-ghent/
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0021
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0021
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0022
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0022
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0023
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0023
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0023
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0024
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0024
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0024
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0024
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0024
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0025
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0025
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0025
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0025
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0026
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0026
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0026
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0026
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0026
http://timothyfitz.com/2009/02/10/continuous-deployment-at-imvu-doing-the-impossible-fifty-times-a-day/
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0027
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0027
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0028
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0028
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0028
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0028
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0029
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0029
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0029
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0029
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0030
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0030
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0030
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0031
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0031
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0031
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0031
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0031
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0032
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0032
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0033
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0033
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0033
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0033
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0034
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0034
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0035
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0035
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0035
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0035
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0036
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0036
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0036
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0036
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0037
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0037
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0038
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0038
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0038
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0038
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0039
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0039
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0039
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0039
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0040
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0040
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0040
http://continuousdelivery.com/2010/08/continuous-delivery-vs-continuous-deployment/
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0041
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0041
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0041
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0042
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0042
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0042
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0043
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0043
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0043
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0044
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0044
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0044
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0044
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0045
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0045
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0046
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0046
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0046
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0047
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0047
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0047
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0047
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0048
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0048
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0048
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0048
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0048
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0049
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0049
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0049
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0049
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0049
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0049
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0050
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0050
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0050
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0050
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0050
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0050
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0050
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0050
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0051
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0051
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0052
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0052
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0053
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0053
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0053
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0053
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0054
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0054
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0055
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0055
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0055
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0056
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0056
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0057
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0057
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0058
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0058
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0058
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0058
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0058
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0059
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0059
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0060
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0060
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0061
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0061
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0061
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0061
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0062
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0062
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0062
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0062
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0063
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0063
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0064
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0064
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0064
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0064
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0064
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0064
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0064
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0065
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0065
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0065
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0065
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0066
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0066
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0067
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0067
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0067
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0068
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0068
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0068
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0068
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0069
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0069
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0069
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0069
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0070
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0070
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0070
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0070
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0071
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0071
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0072
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0072
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0072
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0073
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0073
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0073
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0074
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0074
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0075
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0075
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0075
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0076
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0076
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0076
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0076
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0077
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0077
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0078
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0078
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0078
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0079
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0079
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0079
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0080
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0080
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0081
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0081
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0081
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0082
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0082
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0082
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0083
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0083
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0083
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0083
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0084
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0084
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0085
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0085
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0085
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0085
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0086
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0086
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0087
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0087
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0087
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0087
http://dx.doi.org/10.1016/j.jss.2015.06.063


14 B. Fitzgerald, K.J. Stol / The Journal of Systems and Software 000 (2015) 1–14

ARTICLE IN PRESS
JID: JSS [m5G;August 11, 2015;19:59]

V

v

V

V

W

W

Y

Z

P

H

T
s

b

D
t

s

p

Ries, E., 2011. The Lean Startup: How Today’s Entrepreneurs Use Continuous Innovation
to Create Radically Successful Businesses. Crown Business.

Rogers, R., 2004. Scaling continuous integration. Extreme Programming and Agile Pro-
cesses in Software Engineering, LNCS, vol. 3092. Springer, pp. 68–76.

Royce, W.W., 1987. Managing the development of large software systems. In: Proceed-
ings of the 9th international conference on Software Engineering, pp. 328–338.

Ruhe, G., 2010. Product Release Planning: Methods, Tools and Applications. CRC Press.
Saff, D., Ernst, M.D., 2003. Reducing wasted development time via continuous testing.

In: Proceedings of the 14th International Symposium on Software Reliability Engi-

neering, pp. 281–292.
Shim, J.K., Siegel, J.G., 2008. Budgeting Basics and Beyond, 3rd edition John Wiley &

Sons, Inc.
Shingo, S., 1989. A Study of the Toyota Production System From an Industrial Engineer-

ing Viewpoint, revised Edition. Productivity Press.
Sommerville, I., 2007. Software Engineering. Pearson Educated Ltd.

Steiber, A., Alänge, S., 2013. A corporate system for continuous innovation: the case of

google inc. Eur. J. Innov. Manage. 16 (2), 243–264.
Stolberg, S., 2009. Enabling agile testing through continuous integration. In: Proceed-

ings of the Agile Conference.
Ståhl, D., Bosch, J., 2013. Modeling continuous integration practice differences in in-

dustry software development. J. Syst. Softw. 87 (1), 48–59.
Swanson, E.B., 1976. The dimensions of maintenance. In: Proceedings of the 2nd inter-

national conference on Software engineering, pp. 492–497.

Swartout, P., 2012. Continuous Delivery and DevOps: a QuickStart Guide. Packt
Publishing.

Tabib, R., 2013. Need 4 speed: leverage new metrics to boost your velocity without
compromising on quality. In: Proceedings AGILE 2013.

Tichy, M., Bosch, J., Goedicke, M., Larsson, M. (Eds.), 2014. Proceedings of the 1st Inter-
national Workshop on Rapid Continuous Software Engineering (RCoSE 2014) ACM.

Tushman, M., Anderson, P., O’Reilly, C., 1997. Technology cycles, innovation streams,

and ambidextrous organizations: organizational renewal through innovation
streams and strategic change. Managing Strategic Innovation and Change. Oxford

University Press.
Please cite this article as: B. Fitzgerald, K.J. Stol, Continuous software engin

(2015), http://dx.doi.org/10.1016/j.jss.2015.06.063
altierra, C., Muñoz, M., Mejia, J., 2013. Characterization of software processes
improvement needs in SMEs. In: Proceedings of the International Confer-

ence on Mechatronics, Electronics and Automotive Engineering (ICMEAE), pp.
223–228.

an Hoorn, A., Rohr, M., Hasselbring, W., Waller, J., Ehlers, J., Frey, S., Kieselhorst, D.,
2009. Continuous monitoring of software services: Design and application of the

Kieker framework. Berich Nr. 0921, November 2009. Christian-Albrechts Univer-
sität zu Kiel.

enkatesh, V., Morris, M., Davis, G., Davis, F., 2003. User acceptance of information

technology: toward a unified view. MIS Q. 27 (3), 425–478.
odanovich, S., Sundaram, D., Myers, M., 2010. Digital natives and ubiquitous informa-

tion systems. Inf. Syst. Res. 21 (4), 711–723.
ang, X., Conboy, K., Cawley, O., 2012. “leagile” software development: an experience

report analysis of the application of lean approaches in agile software develop-
ment. J. Syst. Softw. 85 (6), 1287–1299.

omack, J., Jones, D.T., 2003. Lean Thinking: Banish Waste and Create Wealth in Your

Corporation. Productivity Press.
oung, M., Conboy, K., 2013. Contemporary project portfolio management. Int. J. Proj.

Manag. 31 (8), 1089–1100.
hou, T., 2013. An empirical examination of continuance intention of mobile payment

services. Decis. Support Syst. 54 (2), 1085–1091.

rof. Brian Fitzgerald is Chief Scientist at Lero—the Irish Software Research Centre.

e holds an endowed chair, the Frederick Krehbiel Chair in Innovation in Business and

echnology at the University of Limerick. His research interests include open source
oftware, inner source, crowdsourcing, and lean and agile methods. Contact him at

f@lero.ie.

r. Klaas-Jan Stol is a research fellow at Lero—the Irish Software Research Centre at
he University of Limerick. His research interests include open source software, inner

ource, and agile and lean methods. Previously, he was a contributor to an open source

roject. Contact him at klaas-jan.stol@lero.ie.
eering: A roadmap and agenda, The Journal of Systems and Software

http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0088
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0088
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0089
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0089
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0090
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0090
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0091
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0091
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0092
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0092
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0092
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0093
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0093
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0093
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0094
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0094
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0095
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0095
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0096
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0096
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0096
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0097
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0097
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0098
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0098
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0098
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0099
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0099
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0100
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0100
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0101
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0101
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0102
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0103
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0103
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0103
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0103
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0104
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0104
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0104
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0104
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0105
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0105
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0105
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0105
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0105
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0105
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0105
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0105
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0106
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0106
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0106
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0106
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0106
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0107
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0107
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0107
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0107
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0108
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0108
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0108
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0108
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0109
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0109
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0109
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0110
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0110
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0110
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0111
http://refhub.elsevier.com/S0164-1212(15)00143-0/sbref0111
http://dx.doi.org/10.1016/j.jss.2015.06.063

	Continuous software engineering: A roadmap and agenda
	1 Introduction
	2 Trends in the software engineering landscape
	2.1 Enterprise agile
	2.2 DevOps
	2.3 Beyond Budgeting
	2.4 Lean startups

	3 Lean Thinking
	3.1 Value and waste
	3.2 Flow and batch size
	3.3 Autonomation and building-in quality
	3.4 Kaizen and continuous improvement

	4 Continuous*: continuous software engineering and beyond
	4.1 Business strategy & planning
	4.1.1 Continuous planning
	4.1.2 Continuous budgeting

	4.2 Development
	4.2.1 Continuous integration and related constituent activities
	4.2.2 Continuous verification and continuous testing
	4.2.3 Continuous compliance and continuous security
	4.2.4 Continuous evolution

	4.3 Operations
	4.3.1 Continuous use
	4.3.2 Continuous trust
	4.3.3 Continuous run-time monitoring

	4.4 Continuous improvement, continuous innovation and continuous experimentation

	5 Discussion and conclusion
	5.1 The emergence of Continuous*
	5.2 The shift left strategy
	5.3 Challenges for continuous software engineering
	5.3.1 Win the war, not the battles
	5.3.2 The importance of culture and context
	5.3.3 Misplaced focus on speed rather than continuity

	5.4 The need for discontinuous software engineering
	5.5 Achieving the Continuous* agenda
	5.6 Conclusion

	 Acknowledgments
	 References


